Lecture 2

- Well-posedness and internal stability.
- Coprime factorization over H_{∞} .
- Performance specifications in terms of H_2 and H_∞ norms.

Well-Posedness

Even for a matrix equation Ax = b, the solution x does not always exist.

Feedback gives a linear equation in an infinite-dimensional space. Solvability?

Example: Let $P(s) = \frac{s+1}{s+2}$ and K(s) = 1. The closed-loop system is not proper

$$\frac{1}{1 - \frac{s+1}{s+2}} = \frac{s+2}{s+2-s-1} = s+2.$$

$$\begin{array}{c} & & & & & \\ e_1 & & & & \\ & & & & \\ w_1 & & & & \\ \hline & & & & \\ \end{array} \xrightarrow{W_1} \xrightarrow{W_2} e_2 & \begin{pmatrix} I & -K \\ -P & I \end{pmatrix} \begin{pmatrix} e_1 \\ e_2 \end{pmatrix} = \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}$$

The system is solvable if the matrix of the system is invertible for almost all s. Then

$$\left(egin{array}{c} e_1 \ e_2 \end{array}
ight) \,=\, \left(egin{array}{cc} I & -K \ -P & I \end{array}
ight)^{-1} \left(egin{array}{c} w_1 \ w_2 \end{array}
ight)$$

Definition: The closed-loop system is called well-posed if

$$\left(\begin{array}{cc}I & -K\\ -P & I\end{array}\right)^{-1}$$

exists for almost all s and is a proper function.

Lemma: Let *G* be proper and square. Then G^{-1} exists for almost all *s* and is proper if and only if $G(\infty)$ is nonsingular.

Proof: Let
$$G(s) = C(sI - A)^{-1}B + D$$
. Hence $G(\infty) = D$.
" \Rightarrow "

 G^{-1} exists and is proper $\Rightarrow G(\infty)^{-1}$ exists and is bounded \Rightarrow $G(\infty)$ is nonsingular.

Calculate the inverse by [Zhou,p. 14]

$$\begin{array}{rcl} G(s)^{-1} & = & (D+C(sI-A)^{-1}B)^{-1} = \\ & = & D^{-1}-D^{-1}C(sI-A+BD^{-1}C)^{-1}BD^{-1}. \end{array}$$

Hence, the inverse exists for almost all *s* (except the eigenvalues of the matrix $A - BD^{-1}C$) and is proper.

Internal Stability Corollary: The following statement are equivalent 1. The closed-loop system (P, K) is well-posed, Well-posedness guarantees solvability. What about stability? 2. $\begin{pmatrix} I & -K(\infty) \\ -P(\infty) & I \end{pmatrix}$ is invertible, Definition: The closed-loop system is called internally stable if 3. $I - K(\infty)P(\infty)$ is invertible, $\left(egin{array}{cc} I & -K \\ -P & I \end{array}
ight)^{-1} \in RH_{\infty}$ 4. $I - P(\infty)K(\infty)$ is invertible. **Proof:** Due to [Zhou, p. 14] and det(I) = 1 we have The H_{∞} -norm of this operator is the L_2 -gain from disturbances $\det \begin{pmatrix} I & -K \\ -P & I \end{pmatrix} = \det(I - KP) = \det(I - PK)$ w to loop signals e. Using the formula in [Zhou,p. 14] we get the equivalent condition $\left(egin{array}{ccc} (I-KP)^{-1} & K(I-PK)^{-1} \ P(I-KP)^{-1} & (I-PK)^{-1} \end{array}
ight) \in RH_{\infty}.$ *Remark*: Very often in practical cases we have $P(\infty) = 0$ (no direct feed-through). This gives well-posedness automatically Theorem **Corollary 1:** Let $K \in RH_{\infty}$. Then (P, K) is internally stable iff it is well-posed and $P(I - KP)^{-1} \in RH_{\infty}$. The system is internally stable if and only if it is well-posed and **Corollary 2:** Let $P \in RH_{\infty}$. Then (P, K) is internally stable iff it 1. There is no unstable pole-zero cancellation in PK, is well-posed and $K(I - PK)^{-1} \in RH_{\infty}$. 2. $(I - PK)^{-1} \in RH_{\infty}$. **Corollary 3:** Let P and $K \in RH_{\infty}$. Then (P, K) is internally Proof sketch: If there is an unstable pole-zero cancellation stable iff it is well-posed and $(I - PK)^{-1} \in RH_{\infty}$. in PK, then this means that there is an unstable mode of K which does not show up in the output of P and hence can not See [Zhou,p.69] for proof (very easy). be stabilized by feedback from P. Stability of $PK(I - PK)^{-1} = -I + (I - PK)^{-1} = (I - PK)^{-1}PK$ and unstable pole-zero cancellation in the product *PK* directly implies stability of $K(I - PK)^{-1}$ and $(I - PK)^{-1}P$. To prove stability of $(I - KP)^{-1}$ is harder.

Definition: Let $m, n \in RH_{\infty}$. Then m and n are said to be <i>coprime over</i> RH_{∞} if there exist $x, y \in RH_{\infty}$ such that	Coprime Factorization over RH_∞
xm + yn = 1. Definition: Two matrices M , $N \in RH_{\infty}$ are said to be • <i>right coprime over</i> RH_{∞} if there exist $X, Y \in RH_{\infty}$ such	Let <i>P</i> be a proper real rational matrix. A right coprime factor- ization (rcf) of <i>P</i> is a factorization $P = NM^{-1}$ where <i>N</i> and <i>M</i> are right coprime over RH_{∞} .
that $\begin{pmatrix} X & Y \end{pmatrix} \begin{pmatrix} M \\ N \end{pmatrix} = XM + YN = I.$	Similarly, a left coprime factorization (lcf) of P has the form $P = \tilde{M}^{-1}\tilde{N}$ and \tilde{N} and \tilde{M} are left coprime over RH_{∞} . Of course, M and \tilde{M} are square.
• <i>left coprime over</i> RH_{∞} if there exist $X, Y \in RH_{\infty}$ such that $\begin{pmatrix} M & N \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix} = MX + NY = I.$	 Coprimeness means there is no cancellation in the fraction (no nontrivial common right/left divisors). For scalar plant rcf=lcf.
The right hand equations are called Bezout identities	 For real rational matrices both factorizations always exist. They are not unique. There is a state space method to calculate them.
Feedback Interpretation	Coprime Factorization and Internal Stability
Feedback Interpretation Let $P(s) = C(sI - A)^{-1}B + D$, that is	Coprime Factorization and Internal Stability Consider a plant <i>P</i> and a controller <i>K</i> with some rcf and lcf
Feedback Interpretation Let $P(s) = C(sI - A)^{-1}B + D$, that is $\dot{x} = Ax + Bu$, y = Cx + Du	Coprime Factorization and Internal StabilityConsider a plant P and a controller K with some rcf and lcf $P = NM^{-1} = \tilde{M}^{-1}\tilde{N}$ $K = UV^{-1} = \tilde{V}^{-1}\tilde{U}$
Feedback Interpretation Let $P(s) = C(sI - A)^{-1}B + D$, that is $\dot{x} = Ax + Bu$, y = Cx + Du Introduce a change of control $v = u - Fx$ where $A + BF$ is stable. Then we get	Coprime Factorization and Internal Stability Consider a plant <i>P</i> and a controller <i>K</i> with some rcf and lcf $P = NM^{-1} = \tilde{M}^{-1}\tilde{N}$ $K = UV^{-1} = \tilde{V}^{-1}\tilde{U}$ Theorem: The following conditions are equivalent: 1. The closed-loop system (P, K) is internally stable.
Feedback InterpretationLet $P(s) = C(sI - A)^{-1}B + D$, that is $\dot{x} = Ax + Bu$, $y = Cx + Du$ Introduce a change of control $v = u - Fx$ where $A + BF$ is stable. Then we get $\dot{x} = (A + BF)x + Bv$ $y = (C + DF)x + Dv$ $u = Fx + v$	Coprime Factorization and Internal Stability Consider a plant <i>P</i> and a controller <i>K</i> with some rcf and lcf $P = NM^{-1} = \tilde{M}^{-1}\tilde{N}$ $K = UV^{-1} = \tilde{V}^{-1}\tilde{U}$ Theorem: The following conditions are equivalent: 1. The closed-loop system (<i>P</i> , <i>K</i>) is internally stable. 2. $\begin{pmatrix} M & U \\ N & V \end{pmatrix}$ is invertible in RH_{∞} .
Feedback InterpretationLet $P(s) = C(sI - A)^{-1}B + D$, that is $\dot{x} = Ax + Bu$, $y = Cx + Bu$ Introduce a change of control $v = u - Fx$ where $A + BF$ isstable. Then we get $\dot{x} = (A + BF)x + Bv$ $u = Fx + v$ $y = (C + DF)x + Dv$ Denote by $M(s)$ the transfer function from v to u and by $N(s)$ the transfer function from v to y	Coprime Factorization and Internal Stability Consider a plant <i>P</i> and a controller <i>K</i> with some rcf and lcf $P = NM^{-1} = \tilde{M}^{-1}\tilde{N}$ $K = UV^{-1} = \tilde{V}^{-1}\tilde{U}$ Theorem: The following conditions are equivalent: 1. The closed-loop system (<i>P</i> , <i>K</i>) is internally stable. 2. $\begin{pmatrix} M & U \\ N & V \end{pmatrix}$ is invertible in RH_{∞} . 3. $\begin{pmatrix} \tilde{V} & -\tilde{U} \\ -\tilde{N} & \tilde{M} \end{pmatrix}$ is invertible in RH_{∞} .
Feedback InterpretationLet $P(s) = C(sI - A)^{-1}B + D$, that is $\dot{x} = Ax + Bu$, $y = Cx + Du$ Introduce a change of control $v = u - Fx$ where $A + BF$ isstable. Then we get $\dot{x} = (A + BF)x + Bv$ $u = Fx + v$ $y = (C + DF)x + Dv$ Denote by $M(s)$ the transfer function from v to u and by $N(s)$ the transfer function from v to u and by $N(s)$ the transfer function from v to y $M(s) = F(sI - A - BF)^{-1}B + I$, $N(s) = (C + DF)(sI - A - BF)^{-1}B + D$.	Coprime Factorization and Internal Stability Consider a plant <i>P</i> and a controller <i>K</i> with some rcf and lcf $P = NM^{-1} = \tilde{M}^{-1}\tilde{N}$ $K = UV^{-1} = \tilde{V}^{-1}\tilde{U}$ Theorem: The following conditions are equivalent: 1. The closed-loop system (P, K) is internally stable. 2. $\begin{pmatrix} M & U \\ N & V \end{pmatrix}$ is invertible in RH_{∞} . 3. $\begin{pmatrix} \tilde{V} & -\tilde{U} \\ -\tilde{N} & \tilde{M} \end{pmatrix}$ is invertible in RH_{∞} . 4. $\tilde{M}V - \tilde{N}U$ is invertible in RH_{∞} . 5. $\tilde{V}M - \tilde{U}N$ is invertible in RH_{∞} .

Double Coprime Factorization

A double coprime factorization (dcf) of P over RH_{∞} is a factorization

$$P = NM^{-1} = \tilde{M}^{-1}\tilde{N}$$

such that there exist X_r , X_l , Y_r , $Y_l \in RH_{\infty}$ and it holds

$$\left(egin{array}{cc} X_r & Y_r \ - ilde{N} & ilde{M} \end{array}
ight) \left(egin{array}{cc} M & -Y_l \ N & X_l \end{array}
ight) = I.$$

- The only difference between the dcf and a couple of some rcf and lcf is in additional condition $X_rY_l = Y_rX_l$
- The controller $K = -Y_l X_l^{-1} = -X_r^{-1} Y_r$ is internally stabilizing.
- There is a state space method to calculate dcf explicitly (see [Zhou]).

$$egin{array}{rll} y &=& T_o(r-n) + S_oPd_i + S_od, \ r-y &=& S_o(r-d) + T_on - S_oPd_i, \ u &=& KS_o(r-n) - KS_od - T_id_i, \ u_p &=& KS_o(r-n) - KS_od + S_id_i \end{array}$$

1) Good performance requires

 $\underline{\sigma}(L_{\circ}) >> 1, \quad \underline{\sigma}(L_{i}) >> 1, \quad \underline{\sigma}(K) >> 1.$

2) Good robustness and good sensor noise rejection requires

 $\overline{\sigma}(L_o) << 1, \quad \overline{\sigma}(L_i) << 1, \quad \overline{\sigma}(K) \leq M.$

Conflict!!! Separate frequency bands!

Performance Specifications

Introduce the following notations

 $egin{array}{rcl} L_i &=& KP, & L_o &=& PK, \ S_i &=& (I+L_i)^{-1}, & S_o &=& (I+L_o)^{-1}, \ T_i &=& I-S_i, & T_o &=& I-S_o. \end{array}$

 L_i — the input loop transfer function,

 L_o — the output loop transfer function,

 S_i — the input sensitivity ($u_p = S_i d_i$).

 S_o — the output sensitivity ($y = S_o d$).

T — the complementary sensitivity.

H_2 and H_∞ Performance.

For good rejection of d at y and u both $||S_o||$ and $||KS_o||$ should be small at low-frequency range. It can be captured by the norm specification

 $\left\| \left(egin{array}{c} W_e S_o W_d \
ho W_u K S_o W_d \end{array}
ight)
ight\|_2 ext{ or } \infty \leq 1$

where W_d reflects the frequency contents of d or models the disturbance power spectrum, W_e reflects the requirement on the shape of S_o and W_u reflects restriction on the control.

For robustness to high frequency uncertainty, the complimentary sensitivity has to be limited

$$\left\| \left(egin{array}{c} W_e S_o W_d \
ho W_u T_o W_d \end{array}
ight)
ight\|_\infty \leq 1$$

What have we learned today?

- Well-posedness to guarantee solvability.
- Internal stability stability of a feedback loop
- Coprime factorization and internal stability.
- State space formula to calculate coprime factors.
- Performance specifications
- Using norms to capture loop requirements.