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 Formation in nature 

Formation control: 

    Control a group of objects so that they move in a formation. 

Why formation? 

- save energy (birds, fish),  

- accomplish tasks that are difficult for individuals, such as  

    group difence, hunting, transportation, etc. 



 Application of formation control 

- Movement control of  

    unmanned aerial vehicles (UAVs) 

- Location of mobile nodes of  

            sensor networks 

- Robot soccer 

- …… 

 



Approaches to  

Formation Control  

A1 
Relative position control: the desired formation is 

specified by the desired relative position vectors. 

Feature: a consensus problem,  

global stabilization by linear feedback control law 

A2 
Relative distance control: the desired formation is 

specified by the desired relative distances. 

Feature: nonlinear feedback control law 

  multiple equilibria problem 
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Single equilibrium problem, global stabilization  



Distance-based 

 Formation  

How to maintain 
Formation-shape?  

   Undirected 

Graph 

   (Rigidity) 

   Directed 

Graph 

(Persistency) 

   Gradient 

Method 

 
Cao, et al(IEEE CDC 2007) 

Krick, et al( IJC,  2009) 

Dimarogonas & Johansson( ACC,  

2009) 

Bai He(ACC, 2010) 

 

Brief review of  
Relative Distance Control approach 

How to stabilize  

a given formation?  

Laman (1970)      see, e.g., Yu, Anderson 

 (2007, Automatica) 
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System model: agent 
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where                               and                                  are the 

position and velocity, respectively, of agent     . 

(1)  Mass-point model of agent 

is the control input of agent     .  i
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      Let                                       be a set of desired distances associated with G.  

       

      Then, the framework              represents a desired formation.  

 Information architecture 

i j

i j



Control objective 

The formation control problem is to design a  

undirected control law based on the relative positions 

measurement, such that for any initial position, the 

multi-gents systems can achieve the globally 

asymptotically stable rigid formation, and no collision 

happens between any two adjacent agents. 



Rigid Graph 

{ , }G D

{ , }G D

      The formation              is said to be rigid if 

provided that all distance constraints required  

     by             are satisfied during a continuous 

displacement, all inter-vertex distances remain 

constant.  

 

 

      The formation             is minimally rigid if it is 

rigid and if there is no rigid graph having the 

same vertices but less edges.  

{ , }G D



(a) Rigid graph (b) Minimally rigid graph 

(c) non-rigid graph   



Henneberg sequence 

      A Henneberg sequence is a sequence of graphs G2,G3,
…,G|V | with G2=K2 being 

the complete graph on two vertices, and where each graph Gi(i≥3) can be 

obtained from Gi-1 by either a vertex addition operation or an edge splitting 

operation. 
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Figure 1: Representation of vertex addition operation in (a) and 

of the edge plitting operation in (b) 



Rigid graph 

     Lemma 1 [Hendrickx]: Every minimally rigid graph on more than one 

vertex can be obtained as the result of a Henneberg sequence. Moreover, 

all the graphs of such a sequence are minimally rigid. 

     The following result gives a constructive method to form a 

minimally rigid graph. 

     Lemma 2 [Hendrickx]: A graph G(V, E) with |V| > 1 is minimally rigid if 

and only if |E|=2|V|-3 and for all non-empty subset E’ of E, there holds 

|E’|≤2|V (E’ )|-3, where 2|V (E’ )| is the set of vertices incident to E’. 

     The following result gives quantitative relationship between the 

numbers of edges and vertices of a minimally rigid graph. 



Potential Function :  Dimarogonas&Johansson( CDC,  2008)  
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Previous Results: Gradient Method 
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Gradient  
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Dynamics 
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Previous Results: Gradient Method 

Krick, et al 

( IJC,  2009) 

Cao, et al 

(IEEE CDC 

2007) 

Krick, et al 

( IJC,  2009) 

Consider n-agent undirected formation control.  

By using the center manifold theory, it is proved that the 

desired formation is locally asymptotically stable under the 

gradient control law. 

Dimarogonas 

&Johansson 

( ACC,  2009) 

Under the negative gradient control laws multi-agents 

system is globally stable with respect to the desired 

formation  if and only if the formation graph is a tree. 

Consider 3-agent directed formation control. 

The negative gradient control law can drag the system 

from any non-collinear initially positions  to a 

desired triangular formation. 
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 Gradient control 
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)sgn( irVi

33 ii r




Global Stabilizer with Adaptive 
Perturbation 



1.  Among n agents, only n-2 agents are selected for adding 

perturbations. 

2. To each selected agent, say agent i, only one neighbor ( l ) is 

chosen, according to which the perturbation combination  

                                                                                              

       is determined.  

sgn( ) | |
iil il il il r i ilk a k V   

      How to arrange n - 2 agents to which the perturbation is added？  

      How to choose the neighbor l of the perturbed agent  i  by which the 

adaptive perturbation strength         is determined？ il

Remarks on the control law 



 We can prove that if the distances of the edges in         can converge to 

the desired value under the perturbed gradient control, then the 

distances of the rest edges in G (the edges of the spanning tree) will 

automatically converge to the desired values under standard gradient 

control. 

 

t cG G G

tG

cG

cG
Decompose a minimally rigid graph as                    ,  

where        is a spanning tree of G, and        contains  

the remaining edges in G. 

By Lemma 2,  there are n-2 edges in       .  cG



Global Stabilizer with Adaptive Perturbation 

( , )G V E

t cG G G 2n
cG

2n

Theorem 1 

       Suppose               is minimally rigid graph. There exists a decomposition 

                            , such that the            edges in sub-graph      can be looked  

       after by           distinct vertices. 

 



Global Stabilizer with Adaptive Perturbation 

     The figure  illustrates the decomposition of minimally rigid graph G with 6 

vertices.  
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Theorem 3  

Theorem 2 

       Assume that the system (1) controlled by the control 

law (3)-(4), with the potential function        as in (2). 

Then, the desired minimally rigid formation is globally 

asymptotically stable, the velocities of all the agents 

converge to zero, and no collision between any pair of 

adjacent agents happens during the motion.  

ijV

Stability Analysis  
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An example 

G
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34
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12 23 34 45 56 61 13 46 25
ˆ [ , , , , , , , , ]T T T T T T T T T Tr r r r r r r r r r

12 23 34 45

56 61 13 25 46

[ 2.526, 1.429], [1.478, 3.403], [2.640, 2.173], [ 2.896,0.197]

[ 0.138, 3.707], [1.442, 3.101], [ 1.409, 4.832], [1.222, 5.379], [ 3.034,3.905]

T T T T

T T T T T

r r r r

r r r r r

        

           

      Let the desired formation shape be given by Fig. 2. 

The desired distance vector is given by 

12 23 34 45 56 61 13 46 25[ , , , , , , , , ]TD d d d d d d d d d

12 23 34 45 56 61 13 46 253, 3 3, 6d d d d d d d d d        

Under the gradient control law, the system has an unexpected  

equilibrium at 

we evaluate the eigenvalues of the linearized system about the undesired formation 

shape,  all the eigenvalues are negative. So, the undesired formation shape is 

locally stable. 

Figure 2 
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Stabilization by adaptive perturbation method 

The desired formation is as the same as given before. 



Stabilization by adaptive perturbation method 

1 2 3 4 5 6(0) [5,6] , (0) [8,8] , (0) [7,11] , (0) [4,12] , (0) [7,12] , (0) [7,9] .T T T T T Tr r r r r r     

Figure 4: Movement trajectories of agents              Figure 5: Distance between any two adjacent agents 

 

Initial conditions are given as: 

8.5  ,4.4  ,6.2  ,1 64524331  We choose  



Simulations 

  Figure 6: Agents' velocity along the x-axis                          Figure 7: Agents' velocity along the y-axis 



Simulations 

31 43 52 641, 2.6, 4.4, 5.8w w w w   

The desired formation is the same.  

Figure 8: Movement trajectories of agents              Figure 9: Distance between any two adjacent agents 

 

1 2 3 4 5 6(0) [1,1] , (0) [2,2] , (0) [3,3] , (0) [4,4] , (0) [5,5] , (0) [6,6]T T T T T Tr r r r r r     

     From a collinear initial 

condition, the system 

remains collinear for ever 

under gradient control.  Collinear initial condition: 



Simulations 

  Figure 10: Agents' velocity along the x-axis                     Figure 11: Agents' velocity along the y-axis 



Simulations 

12 23 34 45 56 61 13 46 253, 15, 6, 9d d d d d d d d d        

The desired distances are given by 

Figure 12: Movement trajectories of agents           Figure 13: Distance between any two adjacent agents 

 

1 2 3 4 5 6(0) [1,11] , (0) [12,0] , (0) [10,13] , (0) [1,2] , (0) [10,2] , (0) [10,5] .T T T T T Tr r r r r r     

We choose 
31 43 52 641, 2.6, 4.4, 5.8w w w w   

Initial condition: 

A collinear formation 

cannot be stabilized  

by gradient control.  



Simulations 

  Figure 14: Agents' velocity along the x-axis                Figure 15: Agents' velocity along the y-axis 



The end ! 


