<u>Lund, May 2011</u>

Distributed Output Regulation of Multi-Agent Systems

Yiguang Hong Academy of Math & Systems Science Chinese Academy of Sciences

Outline

- 1. Background
- 2. Problem Formulation
- 3. Analysis and Results
- 4. Conclusions

1. Background

- Multi-agent systems (MAS), a model for complex large-scale system & distributed information collection and control -> communication, computation, control, …
- Problems: consensus, formation, coverage, …
- Leader-follower or leaderless coordination
- Connectivity: fixed or switched interaction topology to describe information flow

Output regulation

Applications: asymptotical tracking, disturbance rejection ...

Formulation

- Reference inputs or disturbances generated by an autonomous differential equation called exosystem.
- Output regulation (OR): design a control to make the regulated output $e \rightarrow 0$
- Stabilization: a special case of OR

Problems

- Mathematical description: regulator equation (RE) + internal stability
- Robust OR \rightarrow solvability of RE with uncertainty
- Internal model principle for robust OR: regulation controller should incorporate a suitably reduplicated model of the dynamic structure (internal model) of the exosystem (Wonham 1976)

Our recent works (MAS)

- <u>Distributed output regulation</u> for (active) leader-following coordination (JSSC'09; Automatica'08; ICCA'10; IEEE TAC'10)
- Set coordination: static set aggregation (Automatica'09), containment (CDC'10, IEEE TAC'11), set optimization (ACC'11)
- Multi-agent coverage: static coverage (IFAC'08), sweep coverage (CCC'11)...

2. Problem Formulation

Distributed output regulation (DOR) model for leader-follower coordination (by distributed control of each agent):

- 1) Exosystem \rightarrow active leader ...
- Dynamics different from those of agents
- Unmeasurable states
- 2) Plant \rightarrow agent \rightarrow a group of followeragents with variable interaction topology

Multiple Agents

Multiple Agents

Exosystem (leader)

Linear case

• Exosystem:

 $dw/dt = \Gamma w; w \in \mathbb{R}^k$, $y_0 = Fw \in \mathbb{R}^l$.

• Agent model:

 $dx_i/dt = Ax_i + Bu_i + Dw$, $x_i \in R^m$, $y_i = Cx_i \in R^l$, i = 1, ..., n

- Regulated output: $e_i = y_i \cdot y_0 \rightarrow 0$ as $t \rightarrow \infty$
- Network topology: (1) fixed and directed graph, or (2) switching and undirected graph

Standard Assumptions

- Connectivity of directed graph: exosystem (node 0) is globally reachable
- (A, B) is stabilizable
- Real parts of eigenvalues of the exosystem are nonnegative ($\sigma(\Gamma) \ge 0$, to avoid trivial discussion)
- Rank condition: $\Lambda(\Gamma)$ spectrum of Γ

$$\operatorname{rank} \begin{pmatrix} A - \lambda I & B \\ C & 0 \end{pmatrix} = n + q, \quad \lambda \in \Lambda(\Gamma)$$

3. Analysis and Results

- Stability + solvability of RE of MAS
- Switching topology → switching RE, common Lyapunov function
- Distributed design: neighbor-based rule, not only existence analysis, but also construction of distributed feedback
- Existing IM-based results with special topology: each agent can get the information of the exosystem (Gazi, et al, 2004, …).

Feedback Design

> Neighbor-based control:

- Static feedback (SF):
- Dynamic feedback (DF):

$$u_i = K_z z_i + K_x x_i$$

$$\begin{cases} u_i = K_z z_i + K_x x_i + K_v v_i \\ \dot{v}_i = E_z z_i + E_x x_i + E_v v_i \end{cases}$$

> Relative error (N_i : neighbor set of agent *i*):

$$z_i = \sum_{j \in \mathcal{N}_i} a_{ij} (x_i - x_j) + \mathbb{1}_{(i \in \mathcal{N}_0)} a_{i0} (x_i - C^+ F w)$$

Regulation equations

Closed loop system

$$\left\{egin{aligned} \dot{\xi} &= A_c \xi + B_c w \ \dot{w} &= \Gamma w \ e &= (I_N \otimes C) x - (\mathbf{1} \otimes F) w \end{aligned}
ight.$$

 $x=(x_1,...,x_n)$: state $\xi=x$ in static feedback $\xi=(x,v)$ in dynamic feedback

Regulation constraints

$$\begin{cases} X_c \Gamma = A_c X_c + B_c \ C_c X_c = F_c = \mathbf{1} \otimes F \end{cases}$$

Static feedback

Limitation of state feedback: not robust, limited cases

Result (sufficient conditions): static feedback works if

- 1. C is of rank n;
- 2. there is matrix *K* such that $C^{-1}F\Gamma = (A+BK)C^{-1}F+D$ holds

Dynamic feedback

More freedom in DF \rightarrow more control power: less restrictive and more robust.

- 1. Special design for special systems: control may be simple (above simple cases)
- 2. "Universal" design based on IM with $E_x=0$, $E_z=CG_2$, $E_v=G_1$ in the compensator: systematical and robust

IM-based approach

Existence of effective IM: can be guaranteed by the rank condition.

- Equivalence: necessary and sufficient conditions for the solvability of OR (under the proposed IM controller)
- 1. Distributed OR is solved for the whole agent system
- 2. OR is solved for each "virtual" agent (after transformation)
- 3. Rank condition holds

Fixed topology

Internal Model (IM) approach: output regulation \rightarrow stability.

Two steps in analysis of IM-based distributed control:

- Step 1: transformation based on <u>graph</u> of the network topology → "virtual agent"
- Step 2: <u>simultaneous</u> control of "virtual agents "

Switching topology

Basic result: there are common Lyapunov function (CLF) and common regulation matrix (CRM) X_C \rightarrow switching distributed OR is solved, where

$$\left\{egin{aligned} X_c\Gamma &= A_cX_c + B_c\ C_cX_c &= F_c = \mathbf{1}\otimes F \end{aligned}
ight.$$

Check the existence of CRM in some cases...

Switching topology (2)

Two more steps for OR with switching topology

- ✤ Step 3: check and find CRM → CRM-based transformation
- Step 4: CLF based on the transformation → distributed design

Main results

Key: internal model construction \rightarrow simultaneous control laws \rightarrow CLF (based on CRM).

- Fixed topology: IM-based (dynamic) feedback design
- Switching topology → still an open problem for general linear systems

Example

5 followers: $dx_i/dt = Ax_i + Bu_i + Dw, y_i = Cx_i$ 1 leader (exosystem): $dw/dt = \Gamma w, y_0 = Fw$

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \ \Gamma = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

$$C = (1 \quad 0), \ D = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

Topology

Interaction topology of MAS described by H=L+AL: Laplacian; A: adjacency matrix of the leader

A known result: *H* is of full rank if the graph (containing the leader) is connected

$$H=egin{pmatrix} 1&0&0&0&0\ 0&1&0&0&0\ 0&-1&1&0&0\ -1&0&-1&2&0\ 0&0&0&-1&1 \end{pmatrix}$$

Control design

Internal model:

$$G_1 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}, \quad G_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

IM-based control: $\begin{cases} u_i = (k_1 \quad k_2)z_i + (k_{v1} \quad k_{v2} \quad k_{v3})v_i \\ \dot{v}_i = G_1v_i + G_2Cz_i, \quad v_i \in \mathbb{R}^3 \end{cases}$

 $(k_1 k_2 k_{\upsilon 1} k_{\upsilon 2} k_{\upsilon 3}) = -(4.2948 \ 3.0967 \ 1 \ -0.6316 \ 2.6128)$

Simulations

Regulated errors of 5 follower agents

4. Conclusions

- Distributed output regulation: leader-follower multi-agent systems → coordination between heterogeneous agents ...
- Linear systems → nonlinear or stochastic systems (with assumptions to guarantee the solvability of RE) → more complex models with communication constraints and hybrid structures ...

