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1. Control problems: from the deterministic to the
stochastic
Consider the following controlled system:

d

dt
y = Ay + Bu, t ∈ (0, T ),

y(0) = y0.
(1)

where A ∈ lRn×n, B ∈ lRn×m, T > 0. System (1) is
said to be controllable on (0, T ) if for any y0, y1 ∈ lRn,
there exists a u ∈ L1(0, T ; lRm) such that y(T ) = y1.

Theorem 1µSystem (1) is controllable on (0, T )⇔
rank(B, AB, A2B, · · · , An−1B) = n.
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Put

GT =

∫ T

0

eAtBB∗eA∗tdt.

Theorem 2µIf system (1) is controllable on (0, T ),
then det GT 6= 0. Moreover, for any y0, y1 ∈ lRn, the
control

u∗(t) = −B∗eA∗(T−t)G−1
T (eATy0 − y1)

transfers y0 to y1 at time T .

Clearly, if system (1) is controllable on (0, T ) (by
means of L1-(in time) controls), then the same con-
trollability can be achieved by using analytic-(in time)
controls. We shall see a completely different phe-
nomenon in the simplest stochastic situation.
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• The stochastic setting

Let (Ω,F , {Ft}t≥0, P ) be a complete filtered prob-
ability space on which a one dimensional standard
Brownian motion {B(t)}t≥0 is defined. Let H be a
Banach space. We denote by L2

F(0, T ; H) the Banach
space consisting of all H-valued {Ft}t≥0-adapted
processes X(·) such that E(|X(·)|2L2(0,T ;H)) < ∞,
with the canonical norm; byL∞F (0, T ; H) the Banach
space consisting of all H-valued {Ft}t≥0-adapted
bounded processes; and by L2

F(Ω; C([0, T ]; H))
the Banach space consisting of all H-valued
{Ft}t≥0-adapted continuous processes X(·) such that
E(|X(·)|2C([0,T ];H)) < ∞, with the canonical norm
(Similarly, one can define L2

F(Ω; Ck([0, T ]; H)) for
any positive integer k).
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Consider a one-dimensional controlled stochastic dif-
ferential equation:

dx(t) = [bx(t) + u(t)]dt + σdB(t), (2)
with b and σ being given constants. We say that sys-
tem (2) is exactly controllable if for any x0 ∈ lR
and xT ∈ L2

FT
(Ω; lR), there exists a control u(·) ∈

L2
F(Ω; L1(0, T ; lR)) such that the corresponding solu-

tion x(·) satisfies x(0) = x0 and x(T ) = xT .

It is shown by Q. Lü, J. Yong and X. Zhang (JEMS,
2011) that system (2) is exactly controllable at any
time T > 0 (by means of L2

F(Ω; L1(0, T ; lR))-
controls).
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On the other hand, surprisingly, in virtue of a result by
S. Peng (Prog. Natur. Sci., 1994), system (2) is NOT
exactly controllable if one restricts to use admissible
controls u(·) in L2

F(Ω; L2(0, T ; lR))!

Further, it is shown by Q. Lü, J. Yong and X. Zhang
(JEMS, 2011) that system (2) is NOT exactly control-
lable, either provided that one uses admissible con-
trols u(·) in L2

F(Ω; Lq(0, T ; lR)) for any q ∈ (1,∞].
This leads to a corrected formulation for the exact
controllability of stochastic differential equations, as
presented below.
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Consider a linear stochastic differential equation:{
dy =

(
Ay + Bu

)
dt +

(
Cy + Du

)
dB(t), t ≥ 0,

y(0) = y0 ∈ lRn,
(3)

where A, C ∈ lRn×n and B, D ∈ lRn×m. Unlike
the deterministic case, there exists no universally ac-
cepted notion for stochastic controllability so far.

Motivated by the above observation, we introduce the
following definition: System (3) is said to be exactly
controllable if for any y0 ∈ lRn and yT ∈ L2

FT
(Ω; lRn),

there exists a control u(·) ∈ L2
F(Ω; L1(0, T ; lRm)) such

that Du(·) ∈ L2
F(Ω; L2(0, T ; lRn)) and the correspond-

ing solution y(·) of (3) satisfies y(T ) = yT .
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To explain the significance for the study of stochas-
tic controllability, we recall briefly stochastic optimal
control problems.

It is well-known that one of the most important results
in the determinist optimal control theory (in ODE
setting) is the Pontryagin maximum principle, which
provides a necessary condition for the optimal con-
trol, by means of the adjoint equation of the original
controlled system. In the determinist case, it is easy
to talk about the adjoint equation.
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For example, consider the following controlled (de-
terministic) evolution system

d

dt
y(t) = Ay(t) + Bu(t), t ∈ (0, T ),

y(0) = y0,
(4)

where y(t) ∈ Y is the state variable, u(t) ∈ U is
the control variable, Y and U are called respectively
the state space and control space, both of which are
suitable Hilbert spaces. A generates an C0-semigroup
on Y , while the control operator B maps U into Y .
Then, the adjoint equation of (4) is as follows

d

dt
z(t) = −A∗z(t), t ∈ (0, T ),

z(T ) = z∗.
(5)
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However, one cannot simply do the same in the
stochastic setting. Indeed, it is impossible to solve
the following simplest backward stochastic differen-
tial equation (BSDE for short):{

dz(t) = 0, t ∈ (0, T ),

z(T ) = z∗
(6)

because the only possible equation to (6) is z(t) ≡ z∗,
which is not necessary adapted to the filtration Ft. To
overcome this difficulty, one has to add an “adjusted”
term “Z(t)dB(t)” in (6) as follows{

dz(t) = Z(t)dB(t), t ∈ (0, T ),

z(T ) = z∗.
(7)
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This leads to the appearance of the so-called BSDEs,
which is a very active field in the last 30 years, af-
ter the fundamental works by J.-M. Bismut (1978), E.
Pardoux and S. Peng (1990), etc.
BSDEs and its various invariants play important and
fundamental roles in Stochastic Optimal Control (S.
Peng (1990), J. Yong and X. Y. Zhou (1999)), Math-
ematical Finance (N. El Karoui, S. Peng and M. C.
Quenez (1997)) and so on.
In some sense, BSDEs is a by-product in the study of
stochastic optimal control problem. One can expect a
similar GAIN in the study of stochastic controllability
problem though it is difficult. I believe that the main
concern of the controllability/observability theory in
the near future should be that for stochastic differen-
tial equations.
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Though our definition seems to be a reasonable no-
tion for exact controllability of stochastic differential
equations, a complete study on this problem is still
under consideration and it does not seem to be easy.
Due to this, in what follows we shall relax the require-
ment of exact controllability, say, to consider the null
controllability.

Even in the deterministic setting, one needs to con-
sider only the null controllability (say for the heat
equation).

On the other hand, when focusing on null controlla-
bility problem, we may proceed in a more general set-
ting, i.e., systems governed by stochastic partial dif-
ferential equations.
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2. Controllability and observability estimate for de-
terministic PDEs
Exact controllability: For any y0, y1 ∈ Y , find (if pos-
sible) a u ∈ L2(0, T ; U) such that the solution of (4)
satisfies

y(T ) = y1? (8)

•From the equation point of view, this is a typical ill-
posed problem.
• When dim Y = ∞, one has to relax the exact
controllability requirement (8) in many cases. This
leads to the notions of approximate controllability,
null controllability, partial controllability, etc.
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• The controllability theory for finite dimensional lin-
ear systems was introduced by R.E. Kalman (1960).
Stimulated by Kalman’s work, many mathematicians
devoted to extend it to more general systems includ-
ing infinite dimensional systems, and its nonlinear
and stochastic counterparts.
• There exists a numerous studies on the controllabil-
ity of (deterministic) partial differential equations.
Classical works: D. L. Russell (SIAM Rev., 1978);
J. L. Lions (SIAM Rev., 1988).
Recent book/survey: J. M. Coron (2007); E. Zuazua
(2006).
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By means of the Range Inclusion Theorem in Func-
tional Analysis, the null controllability of system (4)
can be reduced to the following estimate:

|eA∗Tz∗|2Y ∗ ≤ C

∫ T

0

|B∗eA∗(T−s)z∗|2U∗ds,

∀ z∗ ∈ Y ∗.
(9)

Put z(t) = eA∗(T−t)z∗. Then z(·) solves equation (5),
and inequality (9) can be written as

|z(0)|2Y ∗ ≤ C

∫ T

0

|B∗z(s)|2U∗ds,

∀ z∗ ∈ Y ∗.
(10)

It is notable that there is no control variable in equa-
tion (5) any more.
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• Observability estimate is a sort of a priori es-
timate. In the deterministic setting, one develops
many tools on observability estimate, say spectral ap-
proach, Rellich-type multiplier method, moment ap-
poach, microlocal analysis approach, Carleman esti-
mate, etc.
• Similar reduction still works for the controllabil-
ity problem of stochastic PDEs. However, very little
is known for the observability estimate on stochastic
PDEs.
• In what follows, I will talk about the recent works
(in my group) on observability estimate for stochastic
PDEs.
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3. Observability estimate for stochastic hyperbolic
equations
Let G ⊂ Rn (n ∈ N) be a given bounded domain with
a smooth boundary Γ, with Γ0 a given nonempty open
subset of Γ. Put Q = (0, T )×G, Σ = (0, T )× Γ and
Σ0 = (0, T ) × Γ0. Consider the following stochastic
wave equation:

dyt −∆ydt = (a1yt + a2 · ∇y
+a3y + f )dt
+(a4y + g)dB(t) in Q,

y = 0 on Σ,

y(0) = y0, yt(0) = y1 in G,

(11)

with initial data (y0, y1) ∈ L2(Ω,F0, P ; H1
0(G) ×

L2(G)), suitable coefficients ai (i = 1, 2, 3, 4), and
source terms f and g. Here, yt = dy

dt .
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The solution space for equation (11) is chosen to be
the following Banach space (with the canonical norm)

HT = L2
F(Ω; C([0, T ]; H1

0(G)))⋂
L2
F(Ω; C1([0, T ]; L2(G))).

(12)

As in the deterministic case, this is the natural energy
space for equation (11).
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We are concerned with a partial boundary observabil-
ity estimate for equation (11), i.e., find (if possible)
a constant C(a1, a2, a3, a4) > 0 such that solutions of
equation (11) satisfy

|(y(T ), yt(T ))|L2(Ω,FT ,P ;H1
0(G)×L2(G))

≤ C(a1, a2, a3, a4)
[ ∣∣∣∣∂y

∂ν

∣∣∣∣
L2
F(0,T ;L2(Γ0))

+ |f |L2
F(0,T ;L2(G))

+|g|L2
F(0,T ;L2(G))

]
,

∀ (y0, y1) ∈ L2(Ω,F0, P ; H1
0(G)× L2(G)).

(13)
Here, ν is the unit outward normal vector of G.
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The above observability inequality (13) is strongly re-
lated to the state observation problem of semilinear
stochastic wave equations.

The main difficulty to derive (13): It seems that
the usual multiplier approach, spectral approach and
micro-local analysis-based approach, which work
well for deterministic case, DO NOT work in the
present stochastic setting.

Similar results can be established for the stochas-
tic parabolic equation and the stochastic Schrödinger
equation, see S. Tang-X. Zhang (2009) and Q. Lü
(2010), respectively.
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• Review on observability estimate for the determin-
istic hyperbolic equation

We restrict ourself to the time-invariant case and con-
sider the observability estimate for the equation (A is
an elliptic operator):

wtt +Aw = 0, in Q
w = 0, in Σ

w(0) = w0, wt(0) = w1, in Ω.
(14)

That is, for ∅ 6= Σ0 ⊂ Σ,

|w0|2H1
0(G) + |w1|2L2(G) ≤ C

∫
Σ0

∣∣∣∣∂Aw

∂ν

∣∣∣∣2 dΣ0. (15)
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• When A = −∆, Σ0 = (0, T ) × Γ0 with Γ0 to be a
suitable subset of Γ, L.F. Ho (1986) established (15)
by means of the classical Rellich-type multiplier.

•When A is a general elliptic operator of second or-
der, and Σ0 is a general (maybe non-cylinder) subset
of Σ, J.L. Lions (SIAM Rev., 1988) posed an open
problem on “under which condition, estimate (15)
holds?”.
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• When Σ0 = (0, T ) × Γ0 is a cylinder subset of Σ,
Lions’s problem is almost solved but the general case
is a challenging unsolved problem (though the under-
ling equation is linear). The most important result is
as follows:
C. Bardos, G. Lebeau & J. Rauch (1992)’s Geometric
Optics Condition.
• Whenever the system is time-variant, one needs to
use the global Carleman estimate (a sort of weighted
energy approach) to establish the corresponding ob-
servability estimate.
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• Main result and approach

Similar to the deterministic setting, we shall use a
stochastic version of the global Carleman estimate to
establish inequality (13) for the stochastic wave equa-
tion.

The difficulty to do this is the very fact that, unlike
the deterministic situation, equation (11), a stochas-
tic wave equation, is time-irreversible. One can not
simply mimic the usual Carleman inequality for the
deterministic hyperbolic equations.

Instead of the usual smooth weight function, we need
to introduce a singular weight function to derive the
desired Carleman estimate for equation (11).
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Fix any x0 ∈ Rd \G. It is clear that

0 < R0 = min
x∈G

|x− x0| < R1 = max
x∈G

|x− x0|. (16)

Put
Γ0 =

{
x ∈ Γ

∣∣ (x− x0) · ν(x) > 0
}
, (17)

where ν(x) is the unit outward normal vector of G at
x ∈ Γ.
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Assume
a1 ∈ L∞F (0, T ; L∞(G)), a2 ∈ L∞F (0, T ; L∞(G; Rn)),

a3 ∈ L∞F (0, T ; Ln(G)), a4 ∈ L∞F (0, T ; L∞(G)),
(18)

and
f ∈ L2

F(0, T ; L2(G)), g ∈ L2
F(0, T ; L2(G)). (19)

In what follows, we use the notation:

A(a1, a2, a3, a4) = |(a1, a4)|2L∞F (0,T ;(L∞(G))2)

+|a2|2L∞F (0,T ;L∞(G;Rn))

+|a3|2L∞F (0,T ;Ln(G)).

(20)
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We choose a sufficiently small constant c ∈ (0, 1) so
that (Recall (16) for R0 and R1)

(4 + 5c)R2
0

9c
> R2

1. (21)

In the sequel, we take T (> 2R1) sufficiently large
such that

4(4 + 5c)R2
0

9c
> c2T 2 > 4R2

1. (22)
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Our observability estimate for equation (11) is stated
as follows:

Theorem 3: (X. Zhang, 2008). Let (18)–(19) hold, Γ0
be given by (17), and T satisfy (22). Then solutions
of equation (11) satisfy (13) with

C(a1, a2, a3, a4) = CeCA(a1,a2,a3,a4). (23)
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A deterministic version of (11) reads
wtt −∆w = b1wt + b2 · ∇w + b3w + h in Q,
w = 0 on Σ,

w(0) = w0, wt(0) = w1 in G,
(24)

where b1 ∈ L∞(Q), b2 ∈ L∞(Q; Rn), b3 ∈
L∞(0, T ; Ln(G)), and h ∈ L2(Q).



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

As a special case of Theorems 2.2 and 2.3 in “T. Duy-
ckaerts, X. Zhang and E. Zuazua, 2008” and noting
the time-reversibility of equation (24), the following
counterpart of Theorem 1 holds: If T > 2R1, then
solutions of (24) satisfy

|(w(T ), wt(T ))|H1
0(G)×L2(G)

≤ CeC[|b1|2L∞(Q)+|b2|2L∞(Q; Rn)+|b3|2L∞(0,T ; Ln(G))]

×

[∣∣∣∣∂w

∂ν

∣∣∣∣
L2(Σ0)

+ |h|L2(Q)

]
,

∀ (w0, w1) ∈ H1
0(G)× L2(G).

(25)
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One can easily replace the left hand side of (25)
by |(w0, w1)|H1

0(G)×L2(G). However, due to the time-
irreversibility of equation (11), in principal one
cannot simply do the same in the stochastic set-
ting, i.e., replacing the left hand side of (13) by
|(y0, y1)|L2(Ω,F0,P ;H1

0(G)×L2(G)).

Surprisingly, this was done in “Q. Lü, 2010”, ex-
actly in a way of the deterministic setting. This is
highly nontrivial by considering the very fact that the
stochastic wave equation is time-irreversible.
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As mentioned before, in order to prove Theorem 3,
one needs to derive a Carleman estimate (with singu-
lar weight function) for equation (11). For this pur-
pose, for any (large) λ > 0 and any c ∈ (0, 1), set

`(t, x) = λ
[
|x− x0|2 − c

(
t− T

2

)2]
,

θ = e`.

(26)

Also, for any β > 0, we set

Θ(t) = exp

{
− β

t(T − t)

}
, 0 < t < T. (27)

It is easy to see that Θ(t) decays rapidly to 0 as t → 0
or t → T .
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Our Carleman estimate for (11) is as follows:

Theorem 4: (X. Zhang, 2008). Let (18)–(19) hold,
Γ0 be given by (17), and c and T satisfy respectively
(21) and (22). Then there is a constant β > 0 and a
constant λ∗ > 0 such that solutions of equation (11)
satisfy, for λ ≥ λ∗,

λE
∫

Q

Θθ2(y2
t + |∇y|2 + λ2y2)dxdt

≤ CE
{

λ

∫
Σ0

Θθ2

∣∣∣∣∂y

∂ν

∣∣∣∣2 dΣ0

+

∫
Q

Θθ2(f 2 + λg2)dxdt
}

,

∀ (y0, y1) ∈ L2(Ω,F0, P ; H1
0(G)× L2(G)).

(28)
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4. Future works
• It would be quite interesting to study Carleman
and observability estimates for backward stochastic
PDEs. To the best of our knowledge, this is a chal-
lenging problem, and very little is known in this re-
spect.
• We consider here the simplest case of one dimen-
sional standard Brownian motion. It would be inter-
esting to extend the results in this work to the case of
colored (infinite dimensional) noise, or even with both
state- and control-dependent noise. But these remain
to be done.
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• Almost nothing is known on controllability/inverse
problems of stochastic PDEs although there are some
papers addressing the problem in abstract setting.
Nevertheless, recently Q. Lü (2010) proved a signifi-
cant controllability result for forward stochastic heat
equations with one control.
• A sharp condition guaranteeing observability in-
equality (25) (at least when b1, b2, and b3 are time-
invariant) is that the triple (G, Γ0, T ) satisfies the ge-
ometric optic condition introduced in “C. Bardos, G.
Lebeau, and J. Rauch, 1992”. It would be quite in-
teresting to extend this result to the stochastic setting,
but this turns out to be a very difficult problem.
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Thank You!


