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Moore-Greitzer Model: Surge and Stall Dynamics

The surge subsystem of the 3-state MG-model is

d
dt
φ = −ψ + 3

2
φ+ 1

2

[
1 − (1 + φ)3

]

d
dt
ψ = 1

β

[
φ− u

]

where β is a constant; and

– u is a scalar control input;

– ψ is a deviation of average-in-space pressure from steady
state;

– φ is a deviation of average-in-space flow from steady state.



Moore-Greitzer Model: Surge and Stall Dynamics

The full 3-state MG-model is

d
dt
φ = −ψ + 3

2
φ+ 1

2

[
1 − (1 + φ)3

]
− 3 ·R · (1 + φ)

d
dt
ψ = 1

β

[
φ− u

]

d
dt
R = −σ ·R2 − σ ·R ·

[
2φ+ φ2

]
, R(0) ≥ 0

where σ, β is positive constants; and

– u is a scalar control input;

– ψ is a deviation of average-in-space pressure from steady
state;

– φ is a deviation of average-in-space flow from steady state;

– R is a stall variable
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Moore-Greitzer Model: Surge and Stall Dynamics

Challenges to stabilize the origin of the 3MG-model

d
dt
φ = −ψ + 3

2
φ+ 1

2

[
1 − (1 + φ)3

]
− 3 ·R · (1 + φ)

d
dt
ψ = 1

β

[
φ− u

]

d
dt
R = −σ ·R2 − σ ·R ·

[
2φ+ φ2

]
, R(0) ≥ 0

are
• The linearized dynamics is not stabilizable;
• R cannot be used in feedback;
• Nonlinearity in φ-dynamics is known approximately.
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IQC for Moore-Greitzer Model

These are properties of nonlinearities

d
dt
φ = −ψ + 3

2
φ+ 1

2

[
1 − (1 + φ)3

]

︸ ︷︷ ︸

= w1(φ)

−3 · R · (1 + φ)
︸ ︷︷ ︸

= w2(φ,R)

d
dt
ψ = 1

β

[
φ− u

]
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IQC for Moore-Greitzer Model

These are properties of nonlinearities

d
dt
φ = −ψ + 3

2
φ+ 1

2

[
1 − (1 + φ)3

]

︸ ︷︷ ︸

= w1(φ)

−3 · R · (1 + φ)
︸ ︷︷ ︸

= w2(φ,R)

d
dt
ψ = 1

β

[
φ− u

]

For instance,

(−φ) · w1(φ) =
[

1 − (1 + φ)3
]

(−φ) = φ2

(

3 + 3φ+ φ2

)

≥ 3

4
φ2
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IQC for Moore-Greitzer Model

These are properties of nonlinearities

d
dt
φ = −ψ + 3

2
φ+ 1

2

[
1 − (1 + φ)3

]

︸ ︷︷ ︸

= w1(φ)

−3 · R · (1 + φ)
︸ ︷︷ ︸

= w2(φ,R)

d
dt
ψ = 1

β

[
φ− u

]

For instance,

(−φ) · w1(φ) −
3

4
φ2 = φ2

(
3

2
+ φ

)
2

≥ 0

or integrals along any solution of a closed loop system
∫ tk

0

[
−φ(t) · w1(φ(t)) −

3

4
φ2(t)

]
dt > 0, 0 < t1 < t2 < . . .
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Controller Design: Robust Stabilization of Surge

Consider a family of dynamic feedbacks

u = φ− β2

{

λ1φ+λ2ψ+α
[
1−(1+φ)3

]
+ε z

}

ż = −φ

for stabilization of the surge subsystem

d
dt
φ = −ψ + 3

2
φ+ 1

2

[
1 − (1 + φ)3

]

d
dt
ψ = 1

β

[
φ− u

]

Anton Shiriaev. Lund. May 30, 2011 – p. 7/17



Controller Design: Robust Stabilization of Surge

Consider a family of dynamic feedbacks

u = φ− β2

{

λ1φ+λ2ψ+α
[
1−(1+φ)3

]
+ε z

}

ż = −φ

for stabilization of the surge subsystem

d
dt
φ = −ψ + 3

2
φ+ 1

2

[
1 − (1 + φ)3

]

d
dt
ψ = 1

β

[
φ− u

]

The closed loop system takes the form

d
dt






φ

ψ

z




=






3

2
−1 0

λ1 λ2 ε

−1 0 0






︸ ︷︷ ︸

A






φ

ψ

z




+






1

2

α

0






︸ ︷︷ ︸

B

w1(φ)
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Stabilization: How to Find Controller Parameters?

The IQC can help us in searching quadratic Lyapunov function:
• Suppose the transfer function Tw1→φ(s) satisfies

Re
{

Tw1→φ(jω)
}

− 3

4

∣
∣
∣Tw1→φ(jω)

∣
∣
∣

2

≤ 0, ∀ω

• Suppose the matrix
(
A− 3

4
B [1, 0, 0]

)
is Hurwitz
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The IQC can help us in searching quadratic Lyapunov function:
• Suppose the transfer function Tw1→φ(s) satisfies

Re
{

Tw1→φ(jω)
}

− 3

4

∣
∣
∣Tw1→φ(jω)

∣
∣
∣

2

≤ 0, ∀ω

• Suppose the matrix
(
A− 3

4
B [1, 0, 0]

)
is Hurwitz

Then there is P = P T > 0 such that along any solution

x(t) = [φ(t), ψ(t), z(t)]T

of the LF: V (t) = x(t)TPx(t) satisfies the inequality

V (tk) +

tk∫

0

[
−φ(t) · w1(φ(t)) −

3

4
φ2(t)

]
dt ≤ V (0)
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Analysis of Closed Loop with Stall Dynamics

The closed loop system with nontrivial stall dynamics

d
dt
φ = 3

2
φ− ψ + 1

2
w1(φ)− 3 ·R · (1 + φ)

d
dt
ψ = λ1φ+ λ2ψ + εz + αw1(φ)

d
dt
z = −φ

d
dt
R = −σ ·R2 − σ ·R ·

[
2φ+ φ2

]
, R(0) ≥ 0

might be unstable even the surge subsystem is stabilized!
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Analysis of Closed Loop with Stall Dynamics

• Local asymptotic stability of the origin can be analyzed by
the center manifold arguments (done by Leonid Freidovich,
2009)
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Analysis of Closed Loop with Stall Dynamics

• Local asymptotic stability of the origin can be analyzed by
the center manifold arguments (done by Leonid Freidovich,
2009)

• Analysis of bounded solutions shows that ω-limit sets
coincide with the origin. This conclusion is based on

◦ Integrability of stall dynamics

◦ Analysis of the first return Poincare map defined by the
hypersection: d

dt
R = 0
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Analysis of Closed Loop with Stall Dynamics

• Local asymptotic stability of the origin can be analyzed by
the center manifold arguments (done by Leonid Freidovich,
2009)

• Analysis of bounded solutions shows that ω-limit sets
coincide with the origin. This conclusion is based on

◦ Integrability of stall dynamics

◦ Analysis of the first return Poincare map defined by the
hypersection: d

dt
R = 0

• When are all solutions of the closed loop system bounded?
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Boundedness of Solutions

We rewrite the closed loop system

d
dt
φ = 3

2
φ− ψ + 1

2
w1(φ)− 3 ·R · (1 + φ)

d
dt
ψ = λ1φ+ λ2ψ + εz + αw1(φ)

d
dt
z = −φ

d
dt
R = −σ ·R2 − σ ·R ·

[
2φ+ φ2

]
, R(0) ≥ 0
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Boundedness of Solutions

We rewrite the closed loop system






φ̇

ψ̇

ż




 =






3

2
−1 0

λ1 λ2 ε

−1 0 0






︸ ︷︷ ︸

A






φ

ψ

z




+






1

2

α

0






︸ ︷︷ ︸

B1

w1(φ)+






−3

0

0






︸ ︷︷ ︸

B2

w2(R,φ)

d
dt
R = −σ ·R2 − σ ·R ·

[
2φ+ φ2

]
, R(0) ≥ 0

and search for new IQC, if exist, e.g.

−φ · w1 − 3

4
φ2 −K · |w2|

2 ≥ 0

to meet the conditions of KYP lemma.
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Boundedness of Solutions (Con’d)

The frequency condition for the IQC valid along solutions

−φ(t) · w1(t) −
3

4
φ(t)2 −K · |w2(t)|

2 ≥ 0

means that the opposite inequality

−Re
[

φ̃ · w̃1

]

− 3

4
|φ̃|2 −K · |w̃2|

2 ≤ 0

hols for complex numbers related by

jω ·






φ̃

ψ̃

z̃




=






3

2
−1 0

λ1 λ2 ε

−1 0 0






︸ ︷︷ ︸

A






φ̃

ψ̃

z̃




+






1

2

α

0






︸ ︷︷ ︸

B1

w̃1+






−3

0

0






︸ ︷︷ ︸

B2

w̃2

where ω ∈ R
1 and w1, w2 ∈ C

1 are any.
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Boundedness of Solutions (Con’d)

A, B1 and B2 have the particular structure that K > 0 exists.
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Boundedness of Solutions (Con’d)

A, B1 and B2 have the particular structure that K > 0 exists.

Hence, even for unbounded solution of the closed loop system

x(t) = [φ(t), ψ(t), z(t)]T

there is a matrix P = P T > 0, for which the Lyapunov-like
function V (t) = x(t)TPx(t) satisfies

V (tk) +

tk∫

0

φ2(t) ·
[
φ(t) + 3

2

]2
dt−K ·

tk∫

0

w2(t)
2dt ≤ V (0)
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Boundedness of Solutions (Con’d)

A, B1 and B2 have the particular structure that K > 0 exists.

Hence, even for unbounded solution of the closed loop system

x(t) = [φ(t), ψ(t), z(t)]T

there is a matrix P = P T > 0, for which the Lyapunov-like
function V (t) = x(t)TPx(t) satisfies the inequality

V (tk)+

+

tk∫

0

φ2(t) ·
[
φ(t) + 3

2

]2
dt−

−K ·

tk∫

0

[
R(t) · (1 + φ(t))

]2
dt ≤ V (0)
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Boundedness of Solutions (Con’d)

The right-hand side of inequality

V (tk)+

+

tk∫

0

φ2(t) ·
[
φ(t) + 3

2

]2
dt−

−K ·

tk∫

0

[
R(t) · (1 + φ(t))

]
2
dt ≤ V (0)

represent the interlay between the main terms

ε1 · φ(tk)
2 + ε2 ·





tk∫

0

φ(t)dt





2

−K ·

tk∫

0

R(t)2dt
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Integrability of Stall Equation

Given a constant R(0) and a scalar function φ(t), the
corresponding solution R(t) of differential equation

d

dt
R = −σR2 − σR

[
2φ(t) + φ2(t)

]
,

if exists, looks as follows

R(t)=

R(0) exp



−σ

t∫

0

{
φ2(τ) + 2φ(τ)

}
dτ





1+σR(0)

t∫

0

exp



−σ

s∫

0

{
φ2(τ) + 2φ(τ)

}
dτ



ds
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Summary

• A certain class of controllers tuned for stabilizing surge
dynamics stabilize the full 3MG-model as well;
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Summary

• A certain class of controllers tuned for stabilizing surge
dynamics stabilize the full 3MG-model as well;

• In analysis we first chosen IQC and then showed that the
nonlinearity satisfies it!

• The arguments are not specific for compressor chracteristic!

• The arguments for output feedback desing are coming.

Anton Shiriaev. Lund. May 30, 2011 – p. 17/17
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