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Our research problems: 

• To study the joint effects of quantization and packet dropouts 

   on system identification. 

• To derive effective system identification algorithms to  

   cope with both quantization and packet dropouts  

• To jointly design quantizer and parameter estimator for  

   system identification. 

 

 

For simplicity, we consider i.i.d. packet dropouts, i.e., the  

probability that each measured output is lost is constant and is 

independent of other measurements. 
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Motivating Example on quantization 
System:  

                                                        

      where q  is the unknown parameter and v is a zero-mean noise. 

Quantized measurement (1-bit quantizer): 

 

 

      

    The key question is where to place the threshold a so that the  

    MSE for the estimated parameter    , based on the quantized  

    measurement z, is minimized. 

Answer:           .   [Ribeiro and Giannakis, IEEE-TSP, 2006.]             

But the trouble is: q  is the unknown!  

How to design quantizers in a general setting is a difficult question. 
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ARMA Model: 

where u(t) is a given deterministic signal 

           w(t) is an i.i.d. measurement noise with distribution 

           y(t) is quantized by a K-level quantizer  

                is a packet dropout parameter, a sequence of i.i.d. Bernolli  

               random variables with   
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Quantizer:  (possibly time-varying) 

Quantization intervals:  

(scalar output) 
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Notation:   
 
Set of received sample indices:                                             (N is fixed) 

 
Set of received quantized samples: 
 
Plant denominator:  
 
Plant numerator:  
 
Parameter vector:                                                     (subscript star: true) 

 

Parameterized denominator and numerator: 
 
Input sequence: 

Research Problem: 
 
   Given N,      and      , compute the maximum likelihood estimate  
  
        of      .  
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Maximum Likelihood Estimation (MLE) 

The MLE problem is to compute 

 

 

 

 

where 

 

 

 

(Note: The term       will be suppressed for simplicity).  

 

(log-likelihood function) 



Direct solution to MLE is known to be difficult in general. 

 

Proposed 2-Step Method:  

 

  Step 1: Expectation maximization (EM) algorithm 

              Advantages:  

• No initialization needed; 

• Quick descending 

 Disadvantage: Slow convergence 

 

   Step 2: Quasi-Newton gradient search algorithm 

            Advantage: Fast convergence      



Expectation Maximization Method 

If                                                 were available, it would be 

much easier to maximize                     , which is the case in  

the traditional system identification problem.   

 

Now, because      is not available, we replace                     with 

the average of  

 

 

over all possible values of      .   

 

This averaging is done using the conditional probability 

                    of      , given      and some previous estimate   .  



Iterative Procedure: 

 

 

 

 

 

   In theory, for each N, we should iterate over i = 1, 2, …., until  

   convergence. But this is too much time consuming.  

 

   We propose:    One iteration for each time step N, i.e.,  



Closed Form for                               : 

 

 Lemma: 

 

 

 

 

  where 

 

 

 

 

Using the above, we obtain 

 



Recursive Implementation of the EM Algorithm: 

where 



Quasi-Network Search Method 

Iterative Procedure: 

 

 

where the matrix      denotes the approximate Hessian of 

at           ,      represents the gradient of               at          . 

 

Computation of       (using BFGS Formula):  

 

 

 

 

 

where 



Computation of       :  

 

 

 

 

 

where 
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Strong Consistency 

Theorem 1: Let             be a compact set containing the true 

parameter vector     , and such that, for all           , the roots of  

            have magnitudes smaller than or equal to          , for some 

         . Let u(t) be bounded and such that  

 

 

holds if and only if              . If for each N, 

 

 

then 



19 

Theorem 2:  Let 

 

 where 

 

 

 

 

  Suppose the conditions of Theorem 1 hold and that      is in the 

  interior of    . Then,       is invertible and 

 

 

   where 

Asymptotic Normality 
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Result:   The optimal choice for the quantizer design is 

 

 

where                               are the boundaries of the Lloyd’s quantizer  

for the process noise w.  With the above quantizer, we have 

 

 

 where 

 

 

 

 

 

Implementation:  



22 

Outline 

 Problem Formulation 

 Maximum Likelihood Estimation 

 Asymptotic Analysis 

 Quantizer Design 

 Simulation Examples 

 Concluding Remarks 



23 

Simulation Examples 

Example 1: Comparison with Prediction Error Criterion 

                     (No packet loss is considered) 

PE method:  Ignore the presence of the quantizer and estimates 

the parameters  to minimize the power of the difference between 

the quantized samples z(t) and their value predicted using the 

input signal u(t) and q.   

 

ARMA Model: 

 

Noise model for w:  Truncated Gaussian with  

 

Quantizer:  2-bit (K = 4)   
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Example 2: Convergence Comparison for Different Quantizers 

Same ARMA model, noise model and data rate as in Example 1. 

Packet arrival rate:   

 

Quantizer 1:        is stationary 

 

Quantizer 2:       is the optimal quantizer 

 

 

 

Quantizer 3:       is the adaptive quantizer 
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Concluding Remarks  

• We have studied a system identification problem  

   with quantization constraints and packet losses 

• A new recursive algorithm has been proposed based on  

  the EM method and Newton search. 

• Asymptotic analysis shows that the proposed algorithm 

  has similar asymptotic properties as in the case with 

  network constraints, but the convergence rate is  

  affected by the quantizer and the packet dropout rate.  

• A precise characterization of the convergence rate is  

  provided.  

• Quantizer design is considered and an adaptive quantizer 

  is suggested. 


