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2Sparse Approximations (Compressed Sensing)

■ Given a matrix A. Approximate it with a sparse matrix (“many” zero
elements) Â.

■ Make ‖A− Â‖22 small while ‖Â‖0 small (‖x‖0 = # of nonzero elements
in x.)

■ various trade-offs controlled by

min
Â

‖A− Â‖22 + λ‖Â‖0

■ Testing k out of n elements to be zero: Difficult combinatorial problem!
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2Sparse Approximations (Compressed Sensing)

■ Given a matrix A. Approximate it with a sparse matrix (“many” zero
elements) Â.

■ Make ‖A− Â‖22 small while ‖Â‖0 small (‖x‖0 = # of nonzero elements
in x.)

■ various trade-offs controlled by

min
Â

‖A− Â‖22 + λ‖Â‖0

■ Testing k out of n elements to be zero: Difficult combinatorial problem!

■ Replace the ℓ0-norm by the ℓ1-norm!

min
Â

‖A− Â‖22 + λ‖Â‖1
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3Linear System with Occasional Disturbances

x(t+ 1) = Atx(t) +Btu(t) +Gtv(t)

y(t) = Ctx(t) + e(t).

Here, e is white measurement noise and v is a process disturbance.
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4The Process disturbance, v

v is often modeled as Gaussian Noise ... (Kalman filter, LQG etc)
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4The Process disturbance, v

v is often modeled as Gaussian Noise ... (Kalman filter, LQG etc)
But in many applications, v is mostly zero, and strikes only occasionally:

v(t) = δ(t)η(t)

δ(t) =

{

0 with probability 1− µ
1 with probability µ

η(t) ∼ N(0, Q)

Examples of applications:

■ Control: Load disturbance
■ Tracking: Sudden maneuvers

■ FDI: Additive system faults

■ Recursive Identification (x=parameters): model segmentation
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5Approaches:

■ Find the jump times t and/or the smoothed state estimates x̂s(t|N).

Common methods:
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5Approaches:

■ Find the jump times t and/or the smoothed state estimates x̂s(t|N).

Common methods:
■ Say δ(t∗) = 1 View t∗ and v(t∗) as unknown parameters and estimate

them. (Willsky-Jones GLR)
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5Approaches:

■ Find the jump times t and/or the smoothed state estimates x̂s(t|N).

Common methods:
■ Say δ(t∗) = 1 View t∗ and v(t∗) as unknown parameters and estimate

them. (Willsky-Jones GLR)

■ Use a CUSUM test to find time instant(s) t∗ where the residuals indicate
jumps and use Kalman Smoothing with R1(t

∗) = Q.



SON regularization
Lennart Ljung

5th Swedish-Chinese Conference
May 31, 2011

AUTOMATIC CONTROL
REGLERTEKNIK

LINKÖPINGS UNIVERSITET
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■ Find the jump times t and/or the smoothed state estimates x̂s(t|N).

Common methods:
■ Say δ(t∗) = 1 View t∗ and v(t∗) as unknown parameters and estimate

them. (Willsky-Jones GLR)

■ Use a CUSUM test to find time instant(s) t∗ where the residuals indicate
jumps and use Kalman Smoothing with R1(t

∗) = Q.

■ Set R1 = µQ and use Kalman Smooting to estimate x (and v(t))
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5Approaches:

■ Find the jump times t and/or the smoothed state estimates x̂s(t|N).

Common methods:
■ Say δ(t∗) = 1 View t∗ and v(t∗) as unknown parameters and estimate

them. (Willsky-Jones GLR)

■ Use a CUSUM test to find time instant(s) t∗ where the residuals indicate
jumps and use Kalman Smoothing with R1(t

∗) = Q.

■ Set R1 = µQ and use Kalman Smooting to estimate x (and v(t))

■ Branch the KF at each time instant: jump/no jump. Prune/merge
trajectories (IMM).
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5Approaches:

■ Find the jump times t and/or the smoothed state estimates x̂s(t|N).

Common methods:
■ Say δ(t∗) = 1 View t∗ and v(t∗) as unknown parameters and estimate

them. (Willsky-Jones GLR)

■ Use a CUSUM test to find time instant(s) t∗ where the residuals indicate
jumps and use Kalman Smoothing with R1(t

∗) = Q.

■ Set R1 = µQ and use Kalman Smooting to estimate x (and v(t))

■ Branch the KF at each time instant: jump/no jump. Prune/merge
trajectories (IMM).

■ It is a non-linear filtering problem (linear but not Gaussian noise), so try
particle filtering
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5Approaches:

■ Find the jump times t and/or the smoothed state estimates x̂s(t|N).

Common methods:
■ Say δ(t∗) = 1 View t∗ and v(t∗) as unknown parameters and estimate

them. (Willsky-Jones GLR)

■ Use a CUSUM test to find time instant(s) t∗ where the residuals indicate
jumps and use Kalman Smoothing with R1(t

∗) = Q.

■ Set R1 = µQ and use Kalman Smooting to estimate x (and v(t))

■ Branch the KF at each time instant: jump/no jump. Prune/merge
trajectories (IMM).

■ It is a non-linear filtering problem (linear but not Gaussian noise), so try
particle filtering

All methods require some design variables that reflect the trade-off between
measurement noise sensitivity and jump alertness.
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6More om Willsky-Jones GLR

For one jump, estimate t∗ and v(t∗) as parameters.

x(t+ 1) = Atx(t) +Btu(t) +Gtv(t)

y(t) = Ctx(t) + e(t).

■ If t∗ is known it is a simple LS problem to estimate v(t∗). Using the
variance of the estimate, the significance of the jump size can be
decided in a χ2 test.

■ Find the time of the most significant jump and decide of that is significant
enough.

■ For detecting several jumps, each detected jump must be accounted for
when looking for more.
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7Willsky Jones as an Optimization problem

The Willsky-Jones LS procedure can be written as

Let W
(

v(·)
)

=
N
∑

t=1

∥

∥

(

y(t)− Cx(t)
)
∥

∥

2

such that

x(t+ 1) = Ax(t) +Bu(t) +Gv(t); x(1) = 0.

Solve min
v(k),k=1,...,N−1

W
(

v(·)
)

s.t. ‖V ‖0 = 1; V =
[

‖v(1)‖2, . . . , ‖v(N − 1)‖2
]

.
(3)
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7Willsky Jones as an Optimization problem

The Willsky-Jones LS procedure can be written as

Let W
(

v(·)
)

=
N
∑

t=1

∥

∥

(

y(t)− Cx(t)
)
∥

∥

2

such that

x(t+ 1) = Ax(t) +Bu(t) +Gv(t); x(1) = 0.

Solve min
v(k),k=1,...,N−1

W
(

v(·)
)

s.t. ‖V ‖0 = 1; V =
[

‖v(1)‖2, . . . , ‖v(N − 1)‖2
]

.
(4)

min
v(k),k=1,...,N−1

N
∑

t=1

∥

∥

(

y(t)− Cx(t)
)
∥

∥

2
+ λ‖V ‖0
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8Do the ℓ1 trick!

This problem is computationally forbidding, so relax the ℓ0 norm:

min
v(k),k=1,...,N−1

N
∑

t=1

∥

∥

(

y(t)− Cx(t)
)
∥

∥

2
+ λ‖V ‖1

= min
v(k),k=1,...,N−1

N
∑

t=1

∥

∥

(

y(t)− Cx(t)
)
∥

∥

2
+ λ

N
∑

t=1

‖v(t)‖2

[StateSON]
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8Do the ℓ1 trick!

This problem is computationally forbidding, so relax the ℓ0 norm:

min
v(k),k=1,...,N−1

N
∑

t=1

∥

∥

(

y(t)− Cx(t)
)
∥

∥

2
+ λ‖V ‖1

= min
v(k),k=1,...,N−1

N
∑

t=1

∥

∥

(

y(t)− Cx(t)
)
∥

∥

2
+ λ

N
∑

t=1

‖v(t)‖2

[StateSON] Compare with Kalman Smoothing:

min
v(k),k=1,...,N−1

N
∑

t=1

∥

∥R−1/2
e

(

y(t)− Cx(t)
)
∥

∥

2
+

N
∑

t=1

‖R−1/2
v v(t)‖22
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9Choice of λ

There is a maximal value of λ above which v(t) ≡ 0.
It can readily be computed as

λmax = max
k=1,...,N−1

∥

∥

∥

∥

∥

2
N
∑

t=k+1

(

CAt−k−1G
)T

εt

∥

∥

∥

∥

∥

2

.

where ε are the no-jump residuals from the system.

Scale by assumed SNR.

Then use λ = 1
10

√

‖Re‖
‖Q‖ λ

max
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10How does it work?

DC motor with impulse disturbances at t = 49, 55. State RMSE over 500
realizations. Dashed blue: Willsky-Jones, Solid green: StateSON
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11Varying SNRs

Same system. Jump probability µ = 0.015. Varying SNR: Q = jump size, Re =
measurement noise variance. For each SNR, RMSE averages over 500 MC
runs. Many different approaches.
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12Conclusion

■ A ℓ1 (Sum-of-Norms) relaxation of Willsky-Jones’s estimation problem.

■ or The standard ML (Kalman smoother) formulation for smoothing with a
quadratic regularization term has been studied for the case without
squaring the regularization term

■ Still Convex with efficient solution methods
■ Favors “sparse” solutions

■ Good idea for starting values of the regularization parameter λ

■ Compares favorably with existing solutions

■ Many extensions: Model/signal segmentation, path generation, sensor
placement, LPV-modeling, Hybrid models.
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