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Sparse Approximations (Compressed Sensing)

= Given a matrix A. Approximate it with a sparse matrix (“many” zero
elements) A.

= Make ||A — A|j3 small while || A]|o small (||z||o = # of nonzero elements
In x.)

® various trade-offs controlled by

min |4 — A3 + A 4]l

m Testing k out of n elements to be zero: Difficult combinatorial problem!
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Sparse Approximations (Compressed Sensing)

= Given a matrix A. Approximate it with a sparse matrix (“many” zero
elements) A.

= Make ||A — A|j3 small while || A]|o small (||z||o = # of nonzero elements
In x.)

® various trade-offs controlled by

min||4 — Al + A All
m Testing k out of n elements to be zero: Difficult combinatorial problem!
m Replace the ¢/;-norm by the ¢;-norm!

min [|A — AlIZ + AlIA]
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Linear System with Occasional Disturbances

x(t+1) = Asz(t) + Biu(t) + Gyo(t)
y(t) = Crz(t) + e(t).

Here, e is white measurement noise and v is a process disturbance.
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The Process disturbance, v

v is often modeled as Gaussian Noise ... (Kalman filter, LQG etc)
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The Process disturbance, v

v IS often modeled as Gaussian Noise ... (Kalman filter, LQG etc)
But in many applications, v is mostly zero, and strikes only occasionally:

v(t) = o(t)n(t)

5(t) = 0 with probability 1 —
|1 with probability

n(t) ~ N(0, Q)

Examples of applications:

= Control: Load disturbance
® Tracking: Sudden maneuvers

= FDI: Additive system faults
®m Recursive ldentification (x=parameters). model segmentation
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Approaches:

= Find the jump times ¢ and/or the smoothed state estimates z,(t| V).

Common methods:
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Approaches: :

= Find the jump times ¢ and/or the smoothed state estimates z,(t| V).

Common methods:

m Say i(t*) =1 View t* and v(t*) as unknown parameters and estimate
them. (Willsky-Jones GLR)
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Approaches: :

= Find the jump times ¢ and/or the smoothed state estimates z,(t| V).

Common methods:
m Say i(t*) =1 View t* and v(t*) as unknown parameters and estimate
them. (Willsky-Jones GLR)

m Use a CUSUM test to find time instant(s) ¢* where the residuals indicate
jumps and use Kalman Smoothing with R, (t*) = Q.
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Approaches: :

= Find the jump times ¢ and/or the smoothed state estimates z,(t| V).

Common methods:
m Say i(t*) =1 View t* and v(t*) as unknown parameters and estimate

them. (Willsky-Jones GLR)

m Use a CUSUM test to find time instant(s) ¢* where the residuals indicate
jumps and use Kalman Smoothing with R, (t*) = Q.

m Set R; = p@ and use Kalman Smooting to estimate = (and v(t))
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Approaches: :

= Find the jump times ¢ and/or the smoothed state estimates z,(t| V).

Common methods:

m Say i(t*) =1 View t* and v(t*) as unknown parameters and estimate
them. (Willsky-Jones GLR)

m Use a CUSUM test to find time instant(s) ¢* where the residuals indicate
jumps and use Kalman Smoothing with R, (t*) = Q.

m Set R; = p@ and use Kalman Smooting to estimate = (and v(t))

= Branch the KF at each time instant: jump/no jump. Prune/merge
trajectories (IMM).
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Approaches: :

= Find the jump times ¢ and/or the smoothed state estimates z,(t| V).

Common methods:

m Say i(t*) =1 View t* and v(t*) as unknown parameters and estimate
them. (Willsky-Jones GLR)

m Use a CUSUM test to find time instant(s) ¢* where the residuals indicate
jumps and use Kalman Smoothing with R, (t*) = Q.

m Set R; = p@ and use Kalman Smooting to estimate = (and v(t))

= Branch the KF at each time instant: jump/no jump. Prune/merge
trajectories (IMM).

® |t is a non-linear filtering problem (linear but not Gaussian noise), so try
particle filtering
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Approaches: :

= Find the jump times ¢ and/or the smoothed state estimates z,(t| V).

Common methods:

m Say §(t*) = 1 View t* and v(t*) as unknown parameters and estimate
them. (Willsky-Jones GLR)

m Use a CUSUM test to find time instant(s) ¢* where the residuals indicate
jumps and use Kalman Smoothing with R, (t*) = Q.

m Set R; = p@ and use Kalman Smooting to estimate = (and v(t))

= Branch the KF at each time instant: jump/no jump. Prune/merge
trajectories (IMM).

® |t is a non-linear filtering problem (linear but not Gaussian noise), so try
particle filtering

All methods require some design variables that reflect the trade-off between
measurement noise sensitivity and jump alertness.
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More om Willsky-Jones GLR :

For one jump, estimate ¢t* and v(t*) as parameters.

x(t+1) = Awx(t) + Biu(t) + Gyro(t)
y(t) = Crx(t) + e(t).

m |f¢* is known it is a simple LS problem to estimate v(¢*). Using the
variance of the estimate, the significance of the jump size can be

decided in a x? test.

= Find the time of the most significant jump and decide of that is significant
enough.

® For detecting several jumps, each detected jump must be accounted for
when looking for more.
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Willsky Jones as an Optimization problem

The Willsky-Jones LS procedure can be written as

et W(w() =3 | w®) - Cz®)|

such that
z(t+ 1) = Az(t) + Bu(t) + Gu(t); =(1) = 0.

Solve min W (v(+))

st. [VIo=1; V= [llv(Dll2, .., lv(N = 1)]]2].
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Willsky Jones as an Optimization problem

The Willsky-Jones LS procedure can be written as

et W(w() =3 | w®) - Cz®)|

such that
z(t+ 1) = Az(t) + Bu(t) + Gu(t); =(1) = 0.

Solve min W (v(+))

st. [VIo=1; V= [llv(Dll2, .., lv(N = 1)]]2].

N
i S ) = Cx@) [T+ AVl
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Do the /; trick! :

This problem is computationally forbidding, so relax the ¢, norm:
2
— C'z( AV
ok 1ZH )+ AV

_v(k:) km1m N— 1ZH - Ca(t +>‘ZHU )2

[State SON]
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Do the /; trick! :

This problem is computationally forbidding, so relax the ¢, norm:
2
— C'z( AV
ok 1ZH )+ AV

= e 1ZH ~ Calt +AZ”” )l

[StateSON] Compare with Kalman Smoothing:

e 1ZHR_1/2 +ZIIR‘”2 )13
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Choice of A

There is a maximal value of A above which v(¢) = 0.
It can readily be computed as

k=1,...,N

N T
N max (2% 1(CAt_’“‘1G) £,

2

where ¢ are the no-jump residuals from the system.

Scale by assumed SNR.

_ 1 /lRell ymax
Then use \ = 5\ ol A
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How does it work?

DC motor with impulse disturbances at t = 49, 55. State RMSE over 500
realizations. Dashed blue: Willsky-Jones, Solid green: StateSON

25 T T T T
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Varying SNRs

Same system. Jump probability 1 = 0.015. Varying SNR: Q = jump size, R, =
measurement noise variance. For each SNR, RMSE averages over 500 MC
runs. Many different approaches.

10
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Conclusion

m A /; (Sum-of-Norms) relaxation of Willsky-Jones’s estimation problem.

m or The standard ML (Kalman smoother) formulation for smoothing with a
guadratic regularization term has been studied for the case without
sguaring the regularization term

m Still Convex with efficient solution methods
m Favors “sparse” solutions

® Good idea for starting values of the regularization parameter A
m Compares favorably with existing solutions

B Many extensions: Model/signal segmentation, path generation, sensor
placement, LPV-modeling, Hybrid models.
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