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I. Introduction
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Complex Systems and Game Theory

• Complex systems with game-like relationships
may be the most complicated ones to handle.

– Politics, Economics, Business and Biology et al.
e.g., social choice theory, auctions, bargaining, evolutionary,
some seemingly incongruous phenomena in nature such and
cooperation and altruism ......

• Game Theory appears to be a useful tool in
modeling and analyzing conflicts in the context
of dynamical systems.
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Differential Games

• Motivated by combat problems and described
by differential equations with payoff functions

• Combine game theory and control theory in
some sense and related to optimal control
closely

– Two or more controls v.s. a single control

– Each player has its own goal v.s. only one criterion to
be optimized.
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An Example: Pursuer & Evader

• The pursuer attempts to intercept the evader
before some fixed time T while the latter
attempts to do the opposite; both have limited
energy sources.

– e.g., a missile tracking down an airplane

– The pursuer and the evader have opposite aims, one
wants to minimize their distance while the other
wants to maximize, just like the zero-sum game.
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An Example ( mathematical description )

Determine a saddle point (u(t;x0, t0), v(t;x0, t0))(u(t;x0, t0), v(t;x0, t0))(u(t;x0, t0), v(t;x0, t0)) for

J =
a2

2
‖xp(T )− xe(T )‖2AT A +

1
2

∫ T

t0

[‖u(t)‖2Rp(t) − ‖v(t)‖2Re(t)]dt

subject to the constraints

ẋp = Fp(t)xp + Ḡp(t)u; xp(t0) = xp0

ẋe = Fp(t)xe + Ḡp(t)v; xe(t0) = xe0

and

u(t), v(t) ∈ Rm
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An Example (cont’d)

• xp describes the state of the pursuer, while xe

describes the state of the evader.

• a2 is introduced for weighting terminal miss

against energy.

• A saddle point is defined as the pair (u0, v0)

satisfying

J(u0, v) ≤ J(u0, v0) ≤ J(u, v0)

for all u, v ∈ Rm.
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Progress in Differential Games

• Much progress has been made:

From zero-sum to nonzero-sum

From deterministic to stochastic

From perfect information to imperfect state information

• Few adaptive results:

Few have considered adaptation issues in differential games

where there are unknown parameters to the players. Partly

because of the difficulty in the theoretical study of even the

simpler LQG adaptive control problem.
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II. Problem Formulation
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Problem Formulation

• The system is descried by

dX(t) = (AX(t) + B1U1(t) + B2U2(t))dt + DdW (t),

where X(t) ∈ Rn denotes the state trajectory of the game.

U1(t) ∈ Rm1 is the strategy of Player 1.

U2(t) ∈ Rm2 is the strategy of Player 2.

(W (t),Ft; t ≥ 0) is an Rp-valued standard Wiener process

B1 and B2 are unknown to both players.
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Problem Formulation(cont’d)

• The payoff function is

J(U1, U2) = lim
T→∞

1
T

∫ T

0

(
XT (t)QX(t)+UT

1 (t)Q1U1(t)

− UT
2 (t)Q2U2(t)

)
dt,

where Q = QT ≥ 0, R1 = RT
1 > 0, R2 = RT

2 > 0.

Player 1 aims to minimize the payoff function.

Player 2 aims to maximize the payoff function.
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Some Definitions

• Information pattern:

Let ηi(t) = {X(s), 0 ≤ s ≤ εi
t}, 0 ≤ εi

t ≤ t, i = 1, 2,

where ηi(t) determines the state information gained by Player i

at time t, and εi
t denotes the last time of Player i gaining his

information, so Player i can only make strategy depending on
ηi(t).

We say Player i’s information pattern is

open-loop pattern: if ηi(t) = {X(0)}
closed-loop perfect state pattern:

if ηi(t) = {X(s), 0 ≤ s ≤ t}
feedback pattern: if ηi(t) = {X(t)}
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Some Definitions(cont’d)

• Feedback Nash equilibrium:

For the zero-sum linear-quadratic differential game with both
players under the feedback pattern, a pair of strategies (U0

1 , U0
2 )

constitutes a feedback Nash equilibrium if it satisfies

J(U0
1 , U2) ≤ J(U0

1 , U0
2 ) ≤ J(U1, U

0
2 ).

– Since the definition is defined under feedback pattern, Ui is a
mapping:

Ui : ηi(t)(= X(t)) → RmiUi : ηi(t)(= X(t)) → RmiUi : ηi(t)(= X(t)) → Rmi
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The Standard Non-adaptive Case

• The feedback Nash equilibrium for the above
game is expressed as

U1(t) = −Q−1
1 BT

1 RX(t)

U2(t) = Q−1
2 BT

2 RX(t),

where R is the symmetric solution of the following algebraic
Riccati equation, which makes A− (B1Q

−1
1 BT

1 −B2Q
−1
2 BT

2 )R
stable

RA + AT R + Q−R(B1Q
−1
1 BT

1 −B2Q
−1
2 BT

2 )R = 0

provided that some conditions are satisfied.
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Assumptions

• 1) A is stable, and the pair (A, [B1, B2]) is

controllable.

• 2) The matrix function G(s) is antianalytic

perfactorizable,

where G(s) = L + BT (−sI −AT )−1Q(sI −A)−1B

and B = [B1, B2], L =


 Q1

−Q2


 .
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Definitions

Assume (A, [B1, B2]) is stabilizable, and introduce a set

F(A, B1, B2) ,
{

F ,
[

F1, F2

]
|

A + B1F1 + B2F2 exponentially stable
}
.

We say that G(s) is antianalytic perfactorizable if there exists
F ∈ F(A,B1, B2) such that G̃(s) defined below is antianalytic
facotorizable:

G̃(s) = L + BT (−sI − ÃT )−1FT L + LF (sI − Ã)−1B

+ BT (−sI − ÃT )−1(Q + LT RL)(sI − Ã)−1,

which means that G̃(s) can be factorized into two proper rational
matrix functions with their inverse also having the same property.
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Remark

If Assumption 1) is relaxed to

1)′ The pair (A, [B1, B2]) is stabilizable,

then Assumptions 1)′ and 2) are equivalent to the property that
the following algebraic Riccati equation

RA + AT R + Q−R(B1Q
−1
1 BT

1 −B2Q
−1
2 BT

2 )R = 0

has a symmetric solution R, making

A− (B1Q
−1
1 BT

1 −B2Q
−1
2 BT

2 )R

stable (so the feedback Nash equilibrium exists).
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When the Parameters are Unknown

• We use the certainty equivalence principle and estimate the
players’ unknown parameters B1 and B2 first.

• As a starting point, we assume that the two players use a
common estimator, just like there is an independent agency
providing parameter estimation or prediction for them.

• Because of the good convergence properties, we will use the
weighted least squares(WLS) algorithms.
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Linear Regression

• To put the system into a standard linear regression form, we
introduce the following notations:

θT = [B1, B2]

and

ϕ(t) =


 U1(t)

U2(t)


 .

Then the system can be rewritten as

dX(t) = θT ϕ(t)dt + DdW (t).
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WLS Algorithm

• The continuous-time WLS estimates,
(
θ(t), t ≥ 0

)
, can be defined

by

dθ(t) = a(t)P (t)ϕ(t)[dXT (t)−XT (t)AT − ϕT (t)θ(t)dt],

dP (t) = −a(t)P (t)ϕ(t)ϕT (t)P (t)dt,

where P (0) > 0, B1(0) and B2(0) are arbitrary deterministic
matrices such that the pair

(
A, [B1(0), B2(0)]

)
is controllable.
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The Choice of the Weights

• In order to guarantee the self-convergence property of WLS, the
weights a(t) is chosen like the following

a(t) =
1

f
(
r(t)

) ,

where r(t) =‖ P−1(0) ‖ +
∫ t

0
UT

1 (s)U1(s) + UT
2 (s)U2(s)ds

and f ∈ F with

F = {f |f : R+ → R+, f is slowly increasing

and
∫ ∞

c

dx

xf(x)
< ∞ for some c ≥ 0},

where a function is called slowly increasing if it is increasing and
satisfies f ≥ 1.
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Lemma 1:

The continuous-time WLS estimates (θ(t), t ≥ 0) have the following
properties:

1) sup
t≥0

|P−1(t)θ̃(t)|2 < ∞ a.s. ;

2)
∫ ∞

0

a(t)|θ̃T (t)ϕ(t)|2dt < ∞ a.s.;

3) lim
t→∞

θ(t) = θ a.s.;

for i = 1, 2, where θ̃(t) = θ(t)− θ, θT (t) = [B1(t), B2(t)] and θ is a
random matrix.
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Remark

• By Lemma 1, we know that the WLS algorithm

is self-convergent, but the controllability of(
A, [B1(t), B2(t)]

)
is not guaranteed.

• This has also been the main difficulty

encountered in the adaptive LQG control

problem, which can been solved by using a

random regularization method (see,

Guo,IEEE-TAC, 1996; Duncan-Guo-Pasik

Duncan,IEEE-TAC, 1999)
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Regularization

• By Lemma 1, we have

‖ θ − θ(t) ‖= O
(
‖ P (t) ‖

)
.

• So we proceed to modify the estimates by the following way:

θ(t, β) = θ(t)− P 1/2(t)β,

where β ∈M(m1 + m2, n), which denotes the family of
(m1 + m2)× n real matrices, and we denote that

θT (t, β) = [B1(t, β), B2(t, β)].
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Uniform Controllability

• In order to show how to choose β, we will first state a definition
for uniformly controllable:

A family matrices (A(t), B(t), A(t) ∈ Rn×n, B(t) ∈ Rn×m, t ≥ 0)
is said to be uniformly controllable if there is a constant c > 0
such that

n−1∑

i=0

Ai(t)B(t)BT (t)AiT (t) ≥ cI

for all t ∈ [0,∞).
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Choice of β

• The uniform controllability of
(
A, [B1(t, β), B2(t, β)]

)
, is

equivalent to the uniform positivity of F (t, β), where

F (t, β) = det
( ∑n−1

k=0 Ak[B1(t, β), B2(t, β)]


 BT

1 (t, β)

BT
2 (t, β)


 AkT

)
.

• To ensure the uniform controllability of
(
A, [B1(t, β), B2(t, β)]

)
,

β can be chosen like the following:

β0 = 0

βk =





ηk, if F (k, ηk) ≥ (1 + γ)F (k, βk−1)

βk−1, otherwise

where (ηk, k ∈ N) are i.i.d. M(m1 + m2; n)-valued random variables that are

independent of (W (t); t ≥ 0) and γ ∈ (0,
√

2− 1) is fixed.
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Regularized Parameters

• The regularized parameters [B̄1(k), B̄2(k)][B̄1(k), B̄2(k)][B̄1(k), B̄2(k)] are

given by
[

B̄T
1 (k)

B̄T
2 (k)

]
=

[
BT

1 (k)

BT
2 (k)

]
− P 1/2(k)βk

[
B̄T

1 (k)

B̄T
2 (k)

]
=

[
BT

1 (k)

BT
2 (k)

]
− P 1/2(k)βk

[
B̄T

1 (k)

B̄T
2 (k)

]
=

[
BT

1 (k)

BT
2 (k)

]
− P 1/2(k)βk.

• The estimates are given by:

B̂1(t)B̂1(t)B̂1(t) = B̄1(k)= B̄1(k)= B̄1(k)

B̂2(t)B̂2(t)B̂2(t) = B̄2(k)= B̄2(k)= B̄2(k)

for t ∈ (k, k + 1]t ∈ (k, k + 1]t ∈ (k, k + 1], where k ∈ Nk ∈ Nk ∈ N.
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Lemma 2 (properties of the regularized estimates):

Let Assumptions 1) and 2) be satisfied for the game. Then for any
admissible strategies (U1(t), U2(t); t ≥ 0), the family of regularized
WLS estimates (B̂i(t), t ≥ 0, i = 1, 2) have the following properties:

1) Self-convergence, that is, B̂i(t) converges a.s. to some finite
random matrix as t →∞ for i = 1, 2.

2) The family
(
A, [B̂1(t), B̂2(t)]

)
is uniformly controllable.

3) Semiconsistency, that is, as t →∞,

∫ t

0

|(B̂i(s)−Bi)Ui(s)|2ds = o(r(t)) + O(1) a.s.

for i = 1, 2.
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Remarks

• By Lemma 2, we know that
(
A, [B̂1(t), B̂2(t)]

)(
A, [B̂1(t), B̂2(t)]

)(
A, [B̂1(t), B̂2(t)]

)
is

uniformly controllable with respect to ttt.

• We can also prove that, Ĝt(s)Ĝt(s)Ĝt(s) is antianalytic

perfactorizable,

where Ĝt(s) = L + B̂T (−sI − AT )−1Q(sI − A)−1B̂

and B = [B̂1(t), B̂2(t)], L =

[
Q1

−Q2

]
.
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Adaptive Strategies

• Now, since
(
A, [B̂1(t), B̂2(t)]

)
satisfies Assumptions 1)

and 2), the following algebraic Riccati equation will
have a real stable positive solution for each t ∈ [0,∞):

AT R(t)+R(t)A+Q−R(t)
(
B̂1(t)Q

−1B̂T
1 (t)−B̂2(t)Q

−2B̂T
2 (t)

)
R(t) = 0.

• Then Player 1 can use the adaptive strategy given by

U1(t) = −Q−1
1 B̂T

1 (t)R(t)X(t)U1(t) = −Q−1
1 B̂T

1 (t)R(t)X(t)U1(t) = −Q−1
1 B̂T

1 (t)R(t)X(t),

while the adaptive strategy for Player 2 is given by

U2(t) = Q−1
2 B̂T

2 (t)R(t)X(t)U2(t) = Q−1
2 B̂T

2 (t)R(t)X(t)U2(t) = Q−1
2 B̂T

2 (t)R(t)X(t).
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III. Main Results
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Theorem 1 ( stability ):

Let Assumptions 1) and 2) be satisfied and let the

two players using the adaptive strategies as

described above. Then the state trajectory

(X(t), t ≥ 0) of the zero-sum linear-quadratic

differential game is stable in the sense that

lim sup
T−→∞

1

T

∫ T

0

|X(s)|2ds < ∞ a.s.lim sup
T−→∞

1

T

∫ T

0

|X(s)|2ds < ∞ a.s.lim sup
T−→∞

1

T

∫ T

0

|X(s)|2ds < ∞ a.s.
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Strategies with Probing Signals

• To obtain the optimal strategy, diminishing probing signals are
added to the adaptive strategies respectively, given by

U∗1 (t)U∗1 (t)U∗1 (t) = −Q−1
1 B̂1(t)R(k)X(t) + γk[V (t)− V (k)]= −Q−1
1 B̂1(t)R(k)X(t) + γk[V (t)− V (k)]= −Q−1
1 B̂1(t)R(k)X(t) + γk[V (t)− V (k)]

U∗2 (t)U∗2 (t)U∗2 (t) = Q−1
2 B̂2(t)R(k)X(t) + γ′k[V ′(t)− V ′(k)]= Q−1
2 B̂2(t)R(k)X(t) + γ′k[V ′(t)− V ′(k)]= Q−1
2 B̂2(t)R(k)X(t) + γ′k[V ′(t)− V ′(k)]

for t ∈ (k, k + 1], k ∈ N, and γk and γ′k can be any sequences
satisfying the following:

1

k

k∑

i=1

γ2
i = o(1), logl k = o(

k∑

i=1

γ2
i ) for any l ≥ 1

1

k

k∑

i=1

γ′i
2

= o(1), logl k = o(
k∑

i=1

γ′2i ) for any l ≥ 1

and where V (t) and V ′(t) are sequences of independent standard Wiener

Process that are independent of (W (t); t ≥ 0) and (ηk; k ∈ N).
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Theorem 2 ( convergence ):

Let Assumptions 1) and 2) be satisfied and let the

players use the adaptive strategies with probing

signals. Then estimates are consistent:

lim
t→∞

B̂1(t)lim
t→∞

B̂1(t)lim
t→∞

B̂1(t) = B1= B1= B1 a.s.

lim
t→∞

B̂2(t)lim
t→∞

B̂2(t)lim
t→∞

B̂2(t) = B2= B2= B2 a.s.
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Theorem 3 ( optimality ):

The above defined pair of adaptive strategies
(U∗

1 , U∗
2 ) is a feedback Nash equilibrium for the

following payoff function:

J(U1, U2)J(U1, U2)J(U1, U2)

= lim sup
T→∞

1

T

∫ T

0

[XT (t)QX(t) + Uτ
1 (t)R1U1(t) + Uτ

2 (t)R2U2(t)]dt= lim sup
T→∞

1

T

∫ T

0

[XT (t)QX(t) + Uτ
1 (t)R1U1(t) + Uτ

2 (t)R2U2(t)]dt= lim sup
T→∞

1

T

∫ T

0

[XT (t)QX(t) + Uτ
1 (t)R1U1(t) + Uτ

2 (t)R2U2(t)]dt

i.e., for any pair of strategies (U1, U2) , it holds that

J(U∗
1 , U2) ≤ J(U∗

1 , U∗
2 ) ≤ J(U1, U

∗
2 ).
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IV. Concluding Remarks
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Concluding Remarks

• This talk has discussed a class of linear quadratic two-player
zero-sum stochastic differential games with unknown parameters,
and has demonstrated that the optimality of the payoff function
can be achieved by adaptive strategies.

• Many problems remain open, which includes the relaxation of the
related conditions, the use of different estimators by different
players, and the problems of many players in non-zero-sum
differential games, and so on.
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THANK YOU!


