Coherent Nonlinear Feedback and Applications to Quantum Optics on Chip

Jing Zhang and Re-Bing Wu

2011/5/30

Department of Automation

Outline

- Motivations
- Our main results
- Applications to on-chip quantum optics
- Conclusion

Feedback control of quantum system

Two different feedback methods to control quantum systems

without measurement measurement Quantum Quantum Quantum Ouantum input input Output Output Ouantum **Ouantum** dynamical dynamical system system Classical Not measured input Measurement Quantum device controller Classical Classical Output controller **Full quantum loop!**

Department of Automation

Classical feedback based on measurement

Quantum (coherent) feedback without measurement

5th Swedish-Chinese

Conference on Control

Motivations

- A long-standing question in quantum control:
- Is there any problem that can be accomplished by quantum control, but not by classical control?
- Nonlinear quantum optics on chip
- Natural nonlinearity is too weak to generate novel quantum optical phenomena. On-chip experiments are restricted in linear regime

Is there any way to artificially generate and enhance the desired nonlinearity, e.g., by feedback?

Department of Automation

Possible Solutions

- Can quantum nonlinearity be generated by classical (measurement-based) feedback control ?
- The answer is no! (see our previous work in J. Zhang et al. Physical Review A 82, 022101 (2010));
- Full quantum feedback loop (coherent feedback) has to be used !

Existing results in coherent feedback

- General theory of linear coherent feedback:
 - HP model: IEEE TAC, 54: 2530 (2009);
- Quantum transfer function: IEEE TAC, 48: 2107 (2003)), Phys. Rev. A, 81: 023804 (2010).
- Nonlinear coherent feedback system has not been well (rarely) studied!

Our main results

Quantum amplification-feedback system: coherent feedback loop+quantum amplifier

$$\begin{split} & \textbf{Feedback-induced nonlinear Hamiltonian}}\\ \dot{\rho} = -\textbf{i}[\textbf{H}_{eff}, \dot{\rho}] + D[\textbf{L}_{f}]\rho + \langle (N+1)D[\textbf{L}]\rho + ND[\textbf{L}^{+}]\rho\\ & M^{*}(\textbf{L}\rho\textbf{L} - \textbf{L}^{2}\rho/2 - \rho\textbf{L}^{2}/2) + M(\textbf{L}^{+}\rho\textbf{L}^{+} - \textbf{L}^{+2}\rho/2 - \rho\textbf{L}^{+2}/2) \rangle\\ & \text{Decoherence induced by}\\ & \text{the input vacuum field} & \text{Decoherence induced by the}\\ & \textbf{D}[\textbf{L}]\rho = \textbf{L}\rho\textbf{L}^{+} - \textbf{L}^{+}\textbf{L}\rho/2 - \rho\textbf{L}^{+}\textbf{L}/2 & N = \textbf{G}_{0} - \textbf{1}, M = \sqrt{(\textbf{G}_{0} - \textbf{1})\textbf{G}_{0}} \end{split}$$

Cannot be obtained by HP model and quantum transfer function used for linear coherent feedback system!

Our main results

Amplifying quantum nonlinearity by quantum amplifier

Application to quantum optics on chip

Potential applications: Schrödinger cat state preparation, quantum non-demolition measurement...

Department of Automation

5th Swedish-Chinese Conference on Control

b_{out}

Application to quantum optics on chip

Generation of more general fourth-order Hamiltonian

$$H_{eff} = \omega_a a^+ a + \sum_{k=1}^4 \chi_k x_a^k,$$

$$\begin{split} \chi_1 &= A_4 \sqrt{2\gamma}, \\ \chi_2 &= 4 A_1 \sqrt{G_1 \gamma_1} - 2 A_3 \sqrt{G_3 \gamma_3}, \\ \chi_3 &= 2 \sqrt{G_3 \gamma \gamma_3}, \\ \chi_4 &= 2 \sqrt{G_1 \gamma \gamma_1} \end{split}$$

 $\chi_1, \chi_2, \chi_3, \chi_4$ controllabe

Department of Automation

Application to quantum optics on chip

Non-classical light obtained by the constructed nonlinearity

Department of Automation

Conclusion

- Main contributions
- Quantum feedback nonlinearization (QFN) can be realized by coherent feedback !
- > QFN has important applications in quantum optics on chip
- Open problems
- Decoherence effect is also amplified. Quantum "PID" design?
- Implementation complexity --- higher-order nonlinearity?

Department of Automation

Department of Automation