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I. Introduction
+ Boolean Function
Notations:
Dk := {0, 1

k−1 , · · · ,
k−2
k−1 , 1}, D := D2;

δi
k = Coli(Ik);

∆k := {δi
k | i = 1, · · · , k}, ∆ := ∆2;

L ∈Mm×n is called a logical matrix, if Col(L) ⊂ ∆m,
denote it as

L = [δi1
m, · · · , δin

m] := δm[i1, · · · , in].

Definition 1.1
1 x ∈ D is called a Boolean variable;
2 f : Dn → D is called a Boolean function;
3 F : Dn → Dk is called a Boolean mapping.
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+ Decomposition

fX y

(a)

Φ

Ψ
F

X1

X2

y

(b)

Φ

Ψ
F

X1

X3

yX2

(c)

In (a) X = (x1, · · · , xn)

y = f (X).
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+ Decomposition

Disjoint Decomposition
In (b) X = (X1,X2)

y = F(φ(X1), ψ(X2)). (1)

Non-Disjoint Decomposition
In (c) X = (X1,X2,X3)

y = F(φ(X1,X2), ψ(X2,X3)). (2)
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+ Semi-tensor Product of Matrices

Definition 1.2
Let A ∈Mm×n and B ∈Mp×q. Denote

t := lcm(n, p).

Then we define the semi-tensor product (STP) of A and B
as

A n B :=
(
A⊗ It/n

) (
B⊗ It/p

)
∈M(mt/n)×(qt/p). (3)
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+ Some Basic Comments
When n = p, A n B = AB. So the STP is a
generalization of conventional matrix product.
When n = rp, denote it by A �r B;
when rn = p, denote it by A ≺r B.
These two cases are called the multi-dimensional
case, which is particularly important in applications.
STP keeps almost all the major properties of the
conventional matrix product unchanged.
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+ Algebraic Form of Boolean Function

1 ∼ δ1
2, 0 ∼ δ2

2 ⇒ D ∼ ∆.

Boolean function:

f : Dn → D ⇒ ∆n → ∆;

Boolean mapping:

F : Dn → Dm ⇒ ∆n → ∆m.

The later function (mapping) is called the vector form.
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+ Algebraic Form

Theorem 1.3
Let y = f (x1, · · · , xn) : ∆n → ∆. Then there exists a unique
Mf ∈ L2×2n such that

y = Mf x, where x = nn
i=1xi. (4)

Definition 1.4
The Mf is called the structure matrix of f .
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+ Algebraic Form

Theorem 1.5
Let F : ∆n → ∆k be defined by

yi = fi(x1, · · · , xn), i = 1, · · · , k.

Then there exists a unique MF ∈ L2k×2n such that

y = MFx, (5)

where
x = nn

i=1xi; y = nk
i=1yi.

Definition 1.6
The MF is called the structure matrix of F.
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+ Structure Matrices of Logical Operators

Table: Structure Matrices of Logical Operators

¬ Mn δ2[2 1]
∨ Md δ2[1 1 1 2]
∧ Mc δ2[1 2 2 2]
→ Mi δ2[1 2 1 1]
↔ Me δ2[1 2 2 1]
∨̄ Mp δ2[2 1 1 2]
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II. Decomposition of Boolean
Functions

Disjoint Decomposition

f (x1, · · · , xn) = F(φ(X1), ψ(X2)), (6)

where X1 = (x1, · · · , xk).
Algebraic Form

Mf x = MFMφx1Mψx2 = MFMφ (I2k ⊗Mψ) x, (7)

where x1 = nk
i=1xi and x2 = nn

i=k+1xi. Hence

Mf = MFMφ (I2k ⊗Mψ) . (8)
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Theorem 2.1
f is disjoint decomposable, iff

Mf = [µ1Mψ µ2Mψ · · · µ2kMψ] , (9)

where
Mψ ∈ L2×2n−k ;

µi ∈ S, ∀i, where S can be:
Type 1:

S = S1 = {δ2[1 1], δ2[2 2]} ;

Type 2:

S = S2 = {δ2[1 1], δ2[1 2]} or {δ2[2 2], δ2[1 2]} ;

Type 3:
S = S3 = {δ2[1 2], δ2[2 1]} .
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Non-Disjoint Decomposition

f (x1, · · · , xn) = F(φ(X1,X2), ψ(X2,X3)), (10)

where X1 = (x1, · · · , xk1), X2 = (xk1+1, · · · , xk2),
X3 = (xk2+1, · · · , xn).
Algebraic Form

Mf x = MFMφx1x2Mψx2x3 = MFMφ (I2k1+k2 ⊗Mψ)
(
I2k1 ⊗Mk2

r

)
x.

(11)

Where Mk2
r is the order reducing matrix, i.e. [x2]2 = Mk2

r x2.
Hence

Mf = MFMφ (I2k1+k2 ⊗Mψ)
(
I2k1 ⊗Mk2

r

)
. (12)
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Theorem 2.2
f : Dn → D is non-disjoint decomposable, iff

Mf =
[
µ1,1M1

ψ µ1,2M2
ψ · · · µ1,2k2 M2k

2
ψ

µ2,1M1
ψ µ2,2M2

ψ · · · µ2,2k2 M2k
2
ψ

...
µ2k1 ,1M1

ψ µ2k1 ,2M2
ψ · · · µ2k1 ,2k2 M2k

2
ψ

] (13)

where each

Ms
ψ ∈ L2×2k3 , s = 1, · · · , 2k2 ;

µi,j ∈ S, i = 1, · · · , 2k1 , j = 1, · · · , 2k2 ,

S equals to one of the S1, S2, or S3.
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III. Decomposition of Logical
Functions

Definition 3.1
Choosing r elements from Lr×r, say,

T = {T1,T2, · · · ,Tr} ⊂ Lr×r,

T is called a type.
F is said to have Type T , if the structure matrix of F is

MF = [T1 T2 · · · Tr].

Remark: The order of {Ti|i = 1, · · · , r} does not affect the
decomposition.
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+ Disjoint Decomposition of r-valued Functions

Theorem 3.2
Let f : Dn

r → Dr be an r-valued logical function with its
structure matrix Mf , being split into rk blocks as

Mf = [M1,M2, · · · ,Mrk ].

f is disjoint decomposable, iff there exist
(i) a type T = {T1,T2, · · · ,Tr} ⊂ Lr×r,

(ii) a logical matrix Mψ ∈ Lr×rn−k ,
such that

Mi = TsiMψ, where Tsi ∈ T , i = 1, · · · , rk. (14)
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+ Non-disjoint Decomposition of r-valued Functions

Theorem 3.3
Let f : Dn → D be an r-valued logical function with its
structure matrix Mf . f is non-disjoint decomposable, iff
(i) there exists a type T ⊂ Lr×r,

(ii) there exist Mi
ψ ∈ Lr×rk3 , i = 1, · · · , rk2,

such that the structure matrix of f can be expressed as

Mf =
[
µ1,1M1

ψ µ1,2M2
ψ · · · µ1,rk2 Mrk2

ψ

µ2,1M1
ψ µ2,2M2

ψ · · · µ2,rk2 Mrk2
ψ

...
µrk1 ,1M1

ψ µrk1 ,2M2
ψ · · · µrk1 ,rk2 Mrk2

ψ

] (15)

where µi,j ∈ T , ∀i, j.
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+ Decomposition of mix-valued Functions

Theorem 3.4
1 Let f : Dr1 ×Dr2 → Dr0 with its structure matrix as

Mf = [M1 M2 · · · Mr1 ], (16)

where Mi ∈ Lr0×r2. f has a decomposed form with
respect to Dr1 and Dr2, iff, there exist

(i) a type T = {T1,T2, · · · ,Tr0} ⊂ Lr0×r0 ,
(ii) a logical matrix Mψ ∈ Lr0×r2 ,

such that

Mi = TsiMψ, where Tsi ∈ T , i = 1, · · · , r1. (17)
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+ Decomposition of mix-valued Functions

Theorem 3.4(continued)
1 Let f : Dr1 ×Dr2 ×Dr3 → Dr0 be a mix-valued logical

function. f is decomposable with respect to Dr1 ×Dr2

and Dr2 ×Dr3, if and only if,
(i) there exists a type T ⊂ Lr0×r0 ,
(ii) there exist Mi

ψ ∈ Lr0×r3 , i = 1, · · · , r2,

such that the structure matrix of f can be expressed
as

Mf =
[
µ1,1M1

ψ µ1,2M2
ψ · · · µ1,r2M

r2
ψ

µ2,1M1
ψ µ2,2M2

ψ · · · µ2,r2M
r2
ψ

...
µr1,1M1

ψ µr1,2M2
ψ · · · µr1,r2M

r2
ψ

] (18)

where µi,j ∈ T , i = 1, · · · , r1, j = 1, · · · , r2.

20 / 34



IV. Dynamic-algebraic Boolean
Network

A B

C

Figure: A Boolean network

+ Network Dynamics
A(t + 1) = B(t) ∧ C(t)
B(t + 1) = ¬A(t)
C(t + 1) = B(t) ∨ C(t)

(19)
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+ Dynamics of Boolean Network


x1(t + 1) = f1(x1(t), · · · , xn(t))
...

xn(t + 1) = fn(x1(t), · · · , xn(t)), xi ∈ D,
(20)

where
D := {0, 1}.
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+ Algebraic Form of BN (20)

x(t + 1) = Lx(t), (21)

where x = nn
i=1xi, and L ∈ L2n×2n.

+ Algebraic Form of BN (19)

Example 4.1
Consider Boolean network (6) in Fig. 1. We have

L = δ8[3 7 7 8 1 5 5 6].
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+ Dynamic-algebraic BN

D− A BN = Dynamic Part + Algebraic Part.

Dynamic Part: X1

xi(t + 1) = fi(x1, · · · , xn), i = 1, · · · , n− k, (22)

Algebraic Part: X2

gj(x1, · · · , xn) = 1, j = 1, · · · , k. (23)
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+ Solve X2 out from (23)
Express (23) into the form as:

xj = φj(x1, · · · , xn−k), j = n− k + 1, · · · , n. (24)

Algebraic form of (23):

MGx1x2 = δ1
2k , (25)

where MG ∈ L2k×2n.
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+ Constructing Types.
For any positive integer s > 1 define a set of matrices, Ξi,
as

Ξi =
{

Ei ∈ Ls×s|Coli(Ei) = δ1
s ; Colj(Ei) 6= δ1

s , j 6= i
}
, i = 1, 2, · · · , s.

(26)

Using Ξi, we construct a set of types as

Es := [E1 E2 · · · Es] , Ei ∈ Ξi, i = 1, 2, · · · , s. (27)

Each type E ∈ Es corresponds to a unique logical mapping
F : Ds ×Ds → Ds, which has E as its structure matrix, that
is, Mf = E.
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+ Key Lemma.

Lemma 5.1
Let X,Y ∈ ∆s. X = Y, if and only if there exists a E ∈ Es

such that

EXY = δ1
s . (28)
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+ Main Result

Theorem 5.2
xj can be solved as (24) from (23), iff There exists a

E = [E1 E2 · · · E2k ] ∈ E2k ,

such that the structure matrix of G can be expressed as

MG = [M1 M2, · · · ,M2n−k ], (29)

and
Mi ∈ {E1 E2 · · · E2k} , i = 1, · · · , 2n−k.
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+ An Example
Example 5.3
Consider the follow dynamic-static Boolean network

x1(t + 1) = x2(t)→ x4(t)
x2(t + 1) = x1(t) ∧ x3(t)
1 = (x3(t)∨̄x4(t))↔ (x1(t)∨̄x2(t))
0 = x4(t)∨̄(x1(t) ∨ x2(t).

(30)

We intend to solve x3 and x4 out from the last two equa-
tions. First, we convert them to{

g1(x1, x2, x3, x4) := (x3(t)∨̄x4(t))↔ (x1(t)∨̄x2(t)) = 1
g2(x1, x2, x3, x4) := x4(t)↔ (x1(t) ∨ x2(t)) = 1

(31)
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+ An Example
Example 5.3(continued)
It is easy to calculate that in vector form we have{

g1(x1, x2, x3, x4) = Mg1x = δ2[1 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1]x
g2(x1, x2, x3, x4) = Mg2x = δ2[1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 1]x.

(32)

Then the structure matrix of G = (g1, g2) can be easily cal-
culated as

MG = δ4[1 4 3 2 3 2 1 4 3 2 1 4 2 3 4 1]. (33)
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+ An Example
Example 5.3(continued)
Now we can construct the structure matrix MF ∈ E4 as

MF = δ4[1 4 3 2 ∗ 1 ∗ ∗ 3 2 1 4 2 3 4 1], (34)

where 2 ≤ ∗ ≤ 4 can be arbitrary. Comparing (33) with
(34) yields that

Mφ = δ4[1 3 3 4], (35)

which means

x3(t)x4(t) = δ4[1 3 3 4]x1(t)x2(t).
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+ An Example
Example 5.3(continued)
It follows that x3(t) and x4(t) can be solved from (32)
uniquely as {

x3(t) = x1(t) ∧ x2(t)
x4(t) = x1(t) ∨ x2(t).

(36)

plugging (36) into (30) yields{
x1(t + 1) = x2(t)→ (x1(t) ∨ x2(t))
x2(t + 1) = x1(t) ∧ x2(t).

(37)
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V. Conclusion

1 Two kinds of decompositions of Boolean functions
were considered. Necessary and sufficient conditions
were obtained.

2 The results have been extended to k-valued and
mix-valued logical mappings.

3 Solvability of normal form of dynamic-algebraic
logical mapping was considered, and necessary and
sufficient conditions were obtained.

4 Semi-tensor product is an useful tool in dealing with
Boolean functions.
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Thank you!

Question?
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