Decomposition of Logical Mappings with Application to Dynamic-algebraic Boolean Networks

Daizhan Cheng

Institute of Systems Science
Academy of Mathematics and Systems Science
Chinese Academy of Sciences

Swedish-Chinese Conference on Control
Lund, Sweden
May 30-31, 2011

Outline of Presentation

(1) Introduction
2) Decomposition of Boolean Functions

3 Decomposition of Logical Functions
4. Dynamic-algebraic Boolean Network
(5) Conclusion

I. Introduction

Boolean Function

Notations:

- $\mathcal{D}_{k}:=\left\{0, \frac{1}{k-1}, \cdots, \frac{k-2}{k-1}, 1\right\}, \mathcal{D}:=\mathcal{D}_{2}$;
- $\delta_{k}^{i}=\operatorname{Col}_{i}\left(I_{k}\right)$;
- $\Delta_{k}:=\left\{\delta_{k}^{i} \mid i=1, \cdots, k\right\}, \Delta:=\Delta_{2}$;
- $L \in \mathcal{M}_{m \times n}$ is called a logical matrix, if $\operatorname{Col}(L) \subset \Delta_{m}$, denote it as

$$
L=\left[\delta_{m}^{i_{1}}, \cdots, \delta_{m}^{i_{n}}\right]:=\delta_{m}\left[i_{1}, \cdots, i_{n}\right] .
$$

Definition 1.1

(1) $x \in \mathcal{D}$ is called a Boolean variable;
(2) $f: \mathcal{D}^{n} \rightarrow \mathcal{D}$ is called a Boolean function;
(3) $F: \mathcal{D}^{n} \rightarrow \mathcal{D}^{k}$ is called a Boolean mapping.

Decomposition

- $\operatorname{In}(\mathrm{a}) X=\left(x_{1}, \cdots, x_{n}\right)$

$$
y=f(X) .
$$

Decomposition

- Disjoint Decomposition

In (b) $X=\left(X_{1}, X_{2}\right)$

$$
\begin{equation*}
y=F\left(\phi\left(X_{1}\right), \psi\left(X_{2}\right)\right) \tag{1}
\end{equation*}
$$

- Non-Disjoint Decomposition $\ln (\mathrm{c}) X=\left(X_{1}, X_{2}, X_{3}\right)$

$$
\begin{equation*}
y=F\left(\phi\left(X_{1}, X_{2}\right), \psi\left(X_{2}, X_{3}\right)\right) . \tag{2}
\end{equation*}
$$

Semi-tensor Product of Matrices

Definition 1.2

Let $A \in \mathcal{M}_{m \times n}$ and $B \in \mathcal{M}_{p \times q}$. Denote

$$
t:=\operatorname{lcm}(n, p) .
$$

Then we define the semi-tensor product (STP) of A and B as

$$
\begin{equation*}
A \ltimes B:=\left(A \otimes I_{t / n}\right)\left(B \otimes I_{t / p}\right) \in \mathcal{M}_{(m t / n) \times(q t / p)} . \tag{3}
\end{equation*}
$$

Some Basic Comments

- When $n=p, A \ltimes B=A B$. So the STP is a generalization of conventional matrix product.
- When $n=r p$, denote it by $A \succ_{r} B$; when $r n=p$, denote it by $A \prec_{r} B$.
These two cases are called the multi-dimensional case, which is particularly important in applications.
- STP keeps almost all the major properties of the conventional matrix product unchanged.

Algebraic Form of Boolean Function

$$
1 \sim \delta_{2}^{1}, 0 \sim \delta_{2}^{2} \Rightarrow \mathcal{D} \sim \Delta .
$$

- Boolean function:

$$
f: \mathcal{D}^{n} \rightarrow \mathcal{D} \Rightarrow \Delta^{n} \rightarrow \Delta
$$

- Boolean mapping:

$$
F: \mathcal{D}^{n} \rightarrow \mathcal{D}^{m} \Rightarrow \Delta^{n} \rightarrow \Delta^{m} .
$$

The later function (mapping) is called the vector form.

Algebraic Form

Theorem 1.3

Let $y=f\left(x_{1}, \cdots, x_{n}\right): \Delta^{n} \rightarrow \Delta$. Then there exists a unique $M_{f} \in \mathcal{L}_{2 \times 2^{n}}$ such that

$$
\begin{equation*}
y=M_{f} x, \quad \text { where } x=\ltimes_{i=1}^{n} x_{i} . \tag{4}
\end{equation*}
$$

Definition 1.4

The M_{f} is called the structure matrix of f.

Algebraic Form

Theorem 1.5

Let $F: \Delta^{n} \rightarrow \Delta^{k}$ be defined by

$$
y_{i}=f_{i}\left(x_{1}, \cdots, x_{n}\right), \quad i=1, \cdots, k
$$

Then there exists a unique $M_{F} \in \mathcal{L}_{2^{k} \times 2^{n}}$ such that

$$
\begin{equation*}
y=M_{F} x, \tag{5}
\end{equation*}
$$

where

$$
x=\ltimes_{i=1}^{n} x_{i} ; \quad y=\ltimes_{i=1}^{k} y_{i} .
$$

Definition 1.6

The M_{F} is called the structure matrix of F.

Structure Matrices of Logical Operators

Table: Structure Matrices of Logical Operators

\neg	M_{n}	$\delta_{2}\left[\begin{array}{lll}2 & 1\end{array}\right]$
\vee	M_{d}	$\delta_{2}\left[\begin{array}{llll}1 & 1 & 1 & 2\end{array}\right]$
\wedge	M_{c}	$\delta_{2}\left[\begin{array}{llll}1 & 2 & 2 & 2\end{array}\right]$
\rightarrow	M_{i}	$\delta_{2}\left[\begin{array}{llll}1 & 2 & 1 & 1\end{array}\right]$
\leftrightarrow	M_{e}	$\delta_{2}\left[\begin{array}{llll}1 & 2 & 2 & 1\end{array}\right]$
$\overline{\mathrm{V}}$	M_{p}	$\delta_{2}\left[\begin{array}{lllll}2 & 1 & 1 & 2\end{array}\right]$

II. Decomposition of Boolean Functions

Disjoint Decomposition

$$
\begin{equation*}
f\left(x_{1}, \cdots, x_{n}\right)=F\left(\phi\left(X_{1}\right), \psi\left(X_{2}\right)\right) \tag{6}
\end{equation*}
$$

where $X_{1}=\left(x_{1}, \cdots, x_{k}\right)$.
Algebraic Form

$$
\begin{equation*}
M_{f} x=M_{F} M_{\phi} x^{1} M_{\psi} x^{2}=M_{F} M_{\phi}\left(I_{2^{k}} \otimes M_{\psi}\right) x \tag{7}
\end{equation*}
$$

where $x^{1}=\ltimes_{i=1}^{k} x_{i}$ and $x^{2}=\ltimes_{i=k+1}^{n} x_{i}$. Hence

$$
\begin{equation*}
M_{f}=M_{F} M_{\phi}\left(I_{2^{k}} \otimes M_{\psi}\right) \tag{8}
\end{equation*}
$$

Theorem 2.1

f is disjoint decomposable, iff

$$
\begin{equation*}
M_{f}=\left[\mu_{1} M_{\psi} \mu_{2} M_{\psi} \cdots \mu_{2^{k}} M_{\psi}\right] \tag{9}
\end{equation*}
$$

where

$$
M_{\psi} \in \mathcal{L}_{2 \times 2^{n-k}}
$$

$\mu_{i} \in S, \forall i$, where S can be:

- Type 1:

$$
S=S_{1}=\left\{\delta_{2}\left[\begin{array}{ll}
1 & 1
\end{array}\right], \delta_{2}\left[\begin{array}{ll}
2 & 2
\end{array}\right]\right\} ;
$$

- Type 2:

$$
S=S_{2}=\left\{\delta_{2}\left[\begin{array}{ll}
1 & 1
\end{array}\right], \delta_{2}\left[\begin{array}{ll}
1 & 2
\end{array}\right]\right\} \text { or }\left\{\delta_{2}\left[\begin{array}{ll}
2 & 2
\end{array}\right], \delta_{2}\left[\begin{array}{ll}
1 & 2
\end{array}\right]\right\}
$$

- Type 3:

$$
S=S_{3}=\left\{\delta_{2}\left[\begin{array}{ll}
1 & 2
\end{array}\right], \delta_{2}\left[\begin{array}{ll}
2 & 1
\end{array}\right]\right\} .
$$

Non-Disjoint Decomposition

$$
\begin{equation*}
f\left(x_{1}, \cdots, x_{n}\right)=F\left(\phi\left(X_{1}, X_{2}\right), \psi\left(X_{2}, X_{3}\right)\right), \tag{10}
\end{equation*}
$$

where $X_{1}=\left(x_{1}, \cdots, x_{k_{1}}\right), X_{2}=\left(x_{k_{1}+1}, \cdots, x_{k_{2}}\right)$,
$X_{3}=\left(x_{k_{2}+1}, \cdots, x_{n}\right)$.

Algebraic Form

$M_{f} x=M_{F} M_{\phi} x^{1} x^{2} M_{\psi} x^{2} x^{3}=M_{F} M_{\phi}\left(I_{2^{k_{1}+k_{2}}} \otimes M_{\psi}\right)\left(I_{2^{k_{1}}} \otimes M_{r}^{k_{2}}\right) x$.

Where $M_{r}^{k_{2}}$ is the order reducing matrix, i.e. $\left[x^{2}\right]^{2}=M_{r}^{k_{2}} x^{2}$. Hence

$$
\begin{equation*}
M_{f}=M_{F} M_{\phi}\left(I_{2^{k_{1}+k_{2}}} \otimes M_{\psi}\right)\left(I_{2^{k_{1}}} \otimes M_{r}^{k_{2}}\right) . \tag{12}
\end{equation*}
$$

Theorem 2.2

$f: \mathcal{D}^{n} \rightarrow \mathcal{D}$ is non-disjoint decomposable, iff

$$
\begin{align*}
M_{f}= & {\left[\mu_{1,1} M_{\psi}^{1} \mu_{1,2} M_{\psi}^{2} \cdots \mu_{1,2^{k_{2}}} M_{\psi}^{2_{2}^{2_{2}^{k}}}\right.} \\
& \mu_{2,1} M_{\psi}^{1} \mu_{2,2} M_{\psi}^{2} \cdots \mu_{2,2^{k_{2}}} M_{\psi}^{2_{2}^{k}} \tag{13}\\
& \vdots
\end{align*}
$$

where each

$$
\begin{gathered}
M_{\psi}^{s} \in \mathcal{L}_{2 \times 2^{k_{3}}}, \quad s=1, \cdots, 2^{k_{2}} ; \\
\mu_{i, j} \in S, \quad i=1, \cdots, 2^{k_{1}}, j=1, \cdots, 2^{k_{2}},
\end{gathered}
$$

S equals to one of the S_{1}, S_{2}, or S_{3}.

III. Decomposition of Logical Functions

Definition 3.1

Choosing r elements from $\mathcal{L}_{r \times r}$, say,

$$
\mathcal{T}=\left\{T_{1}, T_{2}, \cdots, T_{r}\right\} \subset \mathcal{L}_{r \times r},
$$

\mathcal{T} is called a type.
F is said to have Type \mathcal{T}, if the structure matrix of F is

$$
M_{F}=\left[\begin{array}{llll}
T_{1} & T_{2} & \cdots & T_{r}
\end{array}\right] .
$$

Remark: The order of $\left\{T_{i} \mid i=1, \cdots, r\right\}$ does not affect the decomposition.

Disjoint Decomposition of r-valued Functions

Theorem 3.2

Let $f: \mathcal{D}_{r}^{n} \rightarrow \mathcal{D}_{r}$ be an r-valued logical function with its structure matrix M_{f}, being split into r^{k} blocks as

$$
M_{f}=\left[M_{1}, M_{2}, \cdots, M_{r^{k}}\right] .
$$

f is disjoint decomposable, iff there exist
(i) a type $\mathcal{T}=\left\{T_{1}, T_{2}, \cdots, T_{r}\right\} \subset \mathcal{L}_{r \times r}$,
(ii) a logical matrix $M_{\psi} \in \mathcal{L}_{r \times r^{n-k}}$,

such that

$$
\begin{equation*}
M_{i}=T_{s_{i}} M_{\psi}, \quad \text { where } \quad T_{s_{i}} \in \mathcal{T}, \quad i=1, \cdots, r^{k} . \tag{14}
\end{equation*}
$$

Non-disjoint Decomposition of r-valued Functions

Theorem 3.3

Let $f: \mathcal{D}^{n} \rightarrow \mathcal{D}$ be an r-valued logical function with its structure matrix $M_{f} . f$ is non-disjoint decomposable, iff
(i) there exists a type $\mathcal{T} \subset \mathcal{L}_{r \times r}$,
(ii) there exist $M_{\psi}^{i} \in \mathcal{L}_{r \times r^{k}}, \quad i=1, \cdots, r^{k_{2}}$,
such that the structure matrix of f can be expressed as

$$
\left.\left.\begin{array}{rl}
M_{f}= & {\left[\begin{array}{llll}
\mu_{1,1} M_{\psi}^{1} & \mu_{1,2} M_{\psi}^{2} & \cdots & \mu_{1, r_{2}} M_{\psi}^{k_{2}} \\
& \mu_{2,1} M_{\psi}^{1} & \mu_{2,2} M_{\psi}^{2} & \cdots
\end{array} \mu_{2, r_{2}^{r_{2}}}^{M_{\psi}^{k_{2}}}\right.} \\
& \vdots \tag{15}\\
& \mu_{r_{1}^{k_{1}, 1}} M_{\psi}^{1}
\end{array} \mu_{r_{1}, 2} M_{\psi}^{2} \cdots \cdots \mu_{r^{k_{1}, k_{2}}} M_{\psi}^{k_{2}}\right] .\right]
$$

where $\mu_{i, j} \in \mathcal{T}, \forall i, j$.

Decomposition of mix-valued Functions

Theorem 3.4

(1) Let $f: \mathcal{D}_{r_{1}} \times \mathcal{D}_{r_{2}} \rightarrow \mathcal{D}_{r_{0}}$ with its structure matrix as

$$
M_{f}=\left[\begin{array}{llll}
M_{1} & M_{2} & \cdots & M_{r_{1}} \tag{16}
\end{array}\right],
$$

where $M_{i} \in \mathcal{L}_{r_{0} \times r_{2}} . f$ has a decomposed form with respect to $\mathcal{D}_{r_{1}}$ and $\mathcal{D}_{r_{2}}$, iff, there exist
(i) a type $\mathcal{T}=\left\{T_{1}, T_{2}, \cdots, T_{r_{0}}\right\} \subset \mathcal{L}_{r_{0} \times r_{0}}$,
(ii) a logical matrix $M_{\psi} \in \mathcal{L}_{r_{0} \times r_{2}}$,
such that

$$
\begin{equation*}
M_{i}=T_{s_{i}} M_{\psi}, \quad \text { where } T_{s_{i}} \in \mathcal{T}, \quad i=1, \cdots, r_{1} . \tag{17}
\end{equation*}
$$

Decomposition of mix-valued Functions

Theorem 3.4(continued)

(1) Let $f: \mathcal{D}_{r_{1}} \times \mathcal{D}_{r_{2}} \times \mathcal{D}_{r_{3}} \rightarrow \mathcal{D}_{r_{0}}$ be a mix-valued logical function. f is decomposable with respect to $\mathcal{D}_{r_{1}} \times \mathcal{D}_{r_{2}}$ and $\mathcal{D}_{r_{2}} \times \mathcal{D}_{r_{3}}$, if and only if,
(i) there exists a type $\mathcal{T} \subset \mathcal{L}_{r_{0} \times r_{0}}$,
(ii) there exist $M_{\psi}^{i} \in \mathcal{L}_{r_{0} \times r_{3}}, \quad i=1, \cdots, r_{2}$,
such that the structure matrix of f can be expressed as

$$
\left.\begin{array}{rl}
M_{f}= & {\left[\begin{array}{llll}
\mu_{1,1} M_{\psi}^{1} & \mu_{1,2} M_{\psi}^{2} & \cdots & \mu_{1, r_{2}} M_{\psi}^{r_{2}} \\
& \mu_{2,1} M_{\psi}^{\psi} & \mu_{2,2} M_{\psi}^{2} & \cdots
\end{array} \mu_{2, r_{2}} M_{\psi}^{\psi_{2}}\right.} \\
& \vdots \tag{18}\\
& \mu_{r_{1}, 1} M_{\psi}^{1}
\end{array} \mu_{r_{1,2}, 2} M_{\psi}^{2} \cdots \cdots \mu_{r_{1}, r_{2}} M_{\psi}^{r_{2}}\right]\left[\begin{array}{lll}
\end{array}\right]
$$

where $\mu_{i, j} \in \mathcal{T}, \quad i=1, \cdots, r_{1}, j=1, \cdots, r_{2}$.

IV. Dynamic-algebraic Boolean Network

Figure: A Boolean network

Network Dynamics

$$
\left\{\begin{array}{l}
A(t+1)=B(t) \wedge C(t) \tag{19}\\
B(t+1)=\neg A(t) \\
C(t+1)=B(t) \vee C(t)
\end{array}\right.
$$

Dynamics of Boolean Network

$$
\left\{\begin{array}{l}
x_{1}(t+1)=f_{1}\left(x_{1}(t), \cdots, x_{n}(t)\right) \tag{20}\\
\vdots \\
x_{n}(t+1)=f_{n}\left(x_{1}(t), \cdots, x_{n}(t)\right), \quad x_{i} \in \mathcal{D},
\end{array}\right.
$$

where

$$
\mathcal{D}:=\{0,1\} .
$$

Algebraic Form of BN (20)

$$
\begin{equation*}
x(t+1)=L x(t), \tag{21}
\end{equation*}
$$

where $x=\ltimes_{i=1}^{n} x_{i}$, and $L \in \mathcal{L}_{2^{n} \times 2^{n}}$.
Algebraic Form of BN (19)

Example 4.1

Consider Boolean network (6) in Fig. 1. We have

$$
L=\delta_{8}[37781556] .
$$

Dynamic-algebraic BN

$$
D-A B N=\text { Dynamic Part }+ \text { Algebraic Part } .
$$

Dynamic Part: X_{1}

$$
\begin{equation*}
x_{i}(t+1)=f_{i}\left(x_{1}, \cdots, x_{n}\right), \quad i=1, \cdots, n-k \tag{22}
\end{equation*}
$$

Algebraic Part: X_{2}

$$
\begin{equation*}
g_{j}\left(x_{1}, \cdots, x_{n}\right)=1, \quad j=1, \cdots, k . \tag{23}
\end{equation*}
$$

Solve X_{2} out from (23)
Express (23) into the form as:

$$
\begin{equation*}
x_{j}=\phi_{j}\left(x_{1}, \cdots, x_{n-k}\right), \quad j=n-k+1, \cdots, n \tag{24}
\end{equation*}
$$

Algebraic form of (23):

$$
\begin{equation*}
M_{G} x^{1} x^{2}=\delta_{2^{k}}^{1} \tag{25}
\end{equation*}
$$

where $M_{G} \in \mathcal{L}_{2^{k} \times 2^{n}}$.

Constructing Types.
For any positive integer $s>1$ define a set of matrices, Ξ_{i}, as
$\Xi_{i}=\left\{E_{i} \in \mathcal{L}_{s \times s} \mid \operatorname{Col}_{i}\left(E_{i}\right)=\delta_{s}^{1} ; \operatorname{Col}_{j}\left(E_{i}\right) \neq \delta_{s}^{1}, j \neq i\right\}, \quad i=1,2, \cdot \cdot$

Using Ξ_{i}, we construct a set of types as

$$
\begin{equation*}
\mathcal{E}_{s}:=\left[E_{1} E_{2} \cdots E_{s}\right], \quad E_{i} \in \Xi_{i}, i=1,2, \cdots, s . \tag{27}
\end{equation*}
$$

Each type $E \in \mathcal{E}_{s}$ corresponds to a unique logical mapping $F: \mathcal{D}_{s} \times \mathcal{D}_{s} \rightarrow \mathcal{D}_{s}$, which has E as its structure matrix, that is, $M_{f}=E$.

Key Lemma.

Lemma 5.1

Let $X, Y \in \Delta_{s} . X=Y$, if and only if there exists a $E \in \mathcal{E}_{s}$ such that

$$
\begin{equation*}
E X Y=\delta_{s}^{1} \tag{28}
\end{equation*}
$$

Main Result

Theorem 5.2

x_{j} can be solved as (24) from (23), iff There exists a

$$
E=\left[\begin{array}{llll}
E_{1} & E_{2} & \cdots & E_{2^{k}}
\end{array}\right] \in \mathcal{E}_{2^{k}},
$$

such that the structure matrix of G can be expressed as

$$
\begin{equation*}
M_{G}=\left[M_{1} M_{2}, \cdots, M_{2^{n-k}}\right], \tag{29}
\end{equation*}
$$

and

$$
M_{i} \in\left\{E_{1} E_{2} \cdots E_{2^{k}}\right\}, \quad i=1, \cdots, 2^{n-k} .
$$

An Example

Example 5.3

Consider the follow dynamic-static Boolean network

$$
\left\{\begin{array}{l}
x_{1}(t+1)=x_{2}(t) \rightarrow x_{4}(t) \\
x_{2}(t+1)=x_{1}(t) \wedge x_{3}(t) \tag{30}\\
1=\left(x_{3}(t) \bar{\vee} x_{4}(t)\right) \leftrightarrow\left(x_{1}(t) \bar{\vee} x_{2}(t)\right) \\
0=x_{4}(t) \bar{\vee}\left(x_{1}(t) \vee x_{2}(t) .\right.
\end{array}\right.
$$

We intend to solve x_{3} and x_{4} out from the last two equations. First, we convert them to

$$
\left\{\begin{array}{l}
g_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right):=\left(x_{3}(t) \bar{\vee} x_{4}(t)\right) \leftrightarrow\left(x_{1}(t) \bar{\vee} x_{2}(t)\right)=1 \\
g_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right):=x_{4}(t) \leftrightarrow\left(x_{1}(t) \vee x_{2}(t)\right)=1
\end{array}\right.
$$

An Example

Example 5.3(continued)

It is easy to calculate that in vector form we have

$$
\left\{\begin{array}{l}
g_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=M_{g_{1}} x=\delta_{2}[1221121112211121221] x \tag{32}\\
g_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=M_{g_{2}} x=\delta_{2}[1212121212122121] x .
\end{array}\right.
$$

Then the structure matrix of $G=\left(g_{1}, g_{2}\right)$ can be easily calculated as

$$
\begin{equation*}
M_{G}=\delta_{4}[143223214332142341] . \tag{33}
\end{equation*}
$$

An Example

Example 5.3(continued)

Now we can construct the structure matrix $M_{F} \in \mathcal{E}_{4}$ as

$$
\begin{equation*}
M_{F}=\delta_{4}[1432 * 1 * * 32142341], \tag{34}
\end{equation*}
$$

where $2 \leq * \leq 4$ can be arbitrary. Comparing (33) with (34) yields that

$$
M_{\phi}=\delta_{4}\left[\begin{array}{lll}
1 & 3 & 3 \tag{35}
\end{array}\right],
$$

which means

$$
x_{3}(t) x_{4}(t)=\delta_{4}\left[\begin{array}{lll}
1 & 3 & 3
\end{array}\right] x_{1}(t) x_{2}(t) .
$$

An Example

Example 5.3(continued)

It follows that $x_{3}(t)$ and $x_{4}(t)$ can be solved from (32) uniquely as

$$
\left\{\begin{array}{l}
x_{3}(t)=x_{1}(t) \wedge x_{2}(t) \tag{36}\\
x_{4}(t)=x_{1}(t) \vee x_{2}(t) .
\end{array}\right.
$$

plugging (36) into (30) yields

$$
\left\{\begin{array}{l}
x_{1}(t+1)=x_{2}(t) \rightarrow\left(x_{1}(t) \vee x_{2}(t)\right) \tag{37}\\
x_{2}(t+1)=x_{1}(t) \wedge x_{2}(t)
\end{array}\right.
$$

V. Conclusion

(1) Two kinds of decompositions of Boolean functions were considered. Necessary and sufficient conditions were obtained.
(2) The results have been extended to k-valued and mix-valued logical mappings.
(3) Solvability of normal form of dynamic-algebraic logical mapping was considered, and necessary and sufficient conditions were obtained.
(9) Semi-tensor product is an useful tool in dealing with Boolean functions.

Thank you!

Question?

