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Outline

• Delta instead of shift operator for discrete-time dynamic systems

• Numerical sensitivity of Linear Matrix Inequalities

• Ill-conditioned LMI for shorter sampling periods

• Cancellation for shorter sampling periods
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Delta operator

Continuous-time system

ẋ = Acx

Discrete-time system in the shift operator

x(tk+1) = Aqx(tk)

Aq = ehAc =
∞∑

i=0

(hAc)i

i!
= I + hAc + O(h2) → I when h → 0

Discrete-time system in the delta operator

δx(tk) =
x(tk+1) − x(tk)

h
=

Aq − I

h
x(tk) � Aδx(tk)

Aδ =
ehAc − I

h
→ Ac when h → 0
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Two shift operator models

Ordinary shift operator model

Gq =

⎡
⎣ Aq Bq

Cq Dq

⎤
⎦ =

⎡
⎣ In + hAδ hBδ

Cδ Dδ

⎤
⎦

Signal scaled shift operator model. Input uh =
√

hu, output yh =
√

hy

Gq =

⎡
⎣ Aq Bq

Cq Dq

⎤
⎦ =

⎡
⎣ In + hAδ

√
hBδ√

hCδ Dδ

⎤
⎦

The discrete �2 norm then converges to the continuous L2 norm

‖yh‖2 =
∞∑

k=0

y′h(tk)yh(tk) =
∞∑

k=0

y′(tk)y(tk)h
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Computing the H∞ norm

For a stable discrete-time system G, on shift operator form Gq, the
H∞ norm

‖G‖∞ = max
ω

|Gq(e
iω)|

With input u and output y, the H∞ norm is also given by the induced norm

‖G‖∞ = sup
‖u‖�=0

‖y‖
‖u‖

Then ‖G‖∞ < γ, if and only if there exists a P = P ′ > 0 such that

P > A′
qPAq + C′

qCq − (A′
qPBq + C′

qDq)

(B′
qPBq + D′

qDq − γ2)−1(A′
qPBq + C′

qDq)
′

and

B′
qPBq + D′

qDq − γ2 > 0
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Computing the H∞ norm using LMIs
Introducing the notation

Mq11(P ) = A′
qPAq − P + C′

qCq

Mq12(P ) = A′
qPBq + C′

qDq

Mq22(P, γ) = B′
qPBq + D′

qDq − γ2I

we obtain

Mq11(P ) − Mq12(P )M−1
q22

(P, γ)M ′
q12

(P ) < 0

Mq22(P, γ) > 0

A Schur complement then gives the linear matrix inequality (LMI)

Mq(P, γ) =

[
Mq11(P ) Mq12(P )

Mq12(P ) Mq22(P, γ)

]
< 0

Minimizing γ satisfying this LMI is a semi-definite program, and the solu-
tion gives the H∞-norm.
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Corresponding LMI on delta operator form

Mδ(P, γ) =

⎡
⎣ Mδ11

(P ) Mδ12
(P )

Mδ12
(P ) Mδ22

(P, γ)

⎤
⎦ < 0

Mδ11
(P ) = A′

δP + PAδ + hA′
δPAδ + C′

δCδ

Mδ12
(P ) = PBδ + hA′

δPBδ + C′
δDδ

Mδ22
(P, γ) = hB′

δPBδ + D′
δDδ − γ2I
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Cancellation in shift operator LMI

For short sampling periods we have Aq = I + O(h) and

Mq11 = A′
qPAq − P + C′

qCq = (I + O(h))′P (I + O(h)) + hC′
δCδ − P

= Ph − P + O(h) = O(h)

where Ph ≈ P .

Since Aq = I + AΔ where AΔ = hAδ this cancellation is avoided by
replacing Mq11 = A′

qPAq − P + C′
qCq with

MΔ11
= A′

ΔP + PAΔ + A′
ΔPAΔ + C′

qCq
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Unbounded LMI solution when h → 0

Mq11(P ) = A′
δPh + PhAδ + hA′

δPhAδ + C′
δCδ = Mδ11

(Ph)

Mq12(P ) = (I + hAδ)PhBδ + C′
δDδ = Mδ12

(Ph)

Mq22(P, γ) = hB′
δPhBδ + D′

δDδ − γ2I = Mδ22
(Ph, γ)

Hence, we find that

Mq(P, γ) = Mδ(P̄ , γ)

where P̄ = Ph.
The solution P > 0 to the LMI Mq(P, γ) < 0 can alternatively be obtained
as

P =
P̄

h
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Semidefinite programming

LMIs are normally solved as convex optimization problems. Introduce the
unknown variables ξ = [vec(P )′ γ]′ which gives following semidefinite
programming problem

min γ

subject to F (ξ) = diag(−Mq(P, γ), P ) > 0

where F (ξ) ∈ 
m×m is symmetric and m = (2n + nu).
Solved by an interior-point method with the barrier function

φ(ξ) = − log detF (ξ)

The original criterion γ is then replaced by the approximation

f(ξ) = θγ + φ(ξ) = θγ − log detF (ξ)

where the approximation error is reduced when the parameter θ is in-
creased.
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Ill-conditioned problem

Mq =

[ √
hIn 0
0 Inu

]
Mδ

[ √
hIn 0
0 Inu

]

= T
1
2
h MδT

1
2
h ⇒ detMq = hn detMδ

Since

detF (ξ) = det diag(−Mq(P, γ), P ) = (−1)n+nu detMq(P, γ) detP

= (−1)n+nuhn detMδ(P, γ) detP

is close to zero independent of γ when h is small, we have an ill-
conditioned problem for short sampling periods.
Solution: introduce the scaled LMI problem

MS(P, γ) = T
−1

2
h Mq(P, γ)T

−1
2

h = Mδ(P, γ) < 0

which gives the same optimal γ as the shift operator LMI, but without the
singularity problem for small sampling periods.
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Error analysis

Stored relative error using Hadamard (entry-wise) multiplication ◦
Aε = (1 + εA) ◦ A

Relative error due to subtraction

(A − B)ε = (1 + εs) ◦
(
(1 + εA) ◦ A − (1 + εB) ◦ B

)
Some manipulations then gives

Mε
q(P, γ) = T

1
2
h

(
Mδ(P, γ) + ε ◦ Mδ(P, γ) +

1

h
diag(εP ◦ P, 0nu×nu)

)
T

1
2
h
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Error estimate
Hence we suggest the following relative error estimate for γq

eγ =
|γ − γ0|

γ0
≈ εγΔ

h
+

εγS

h

Gc(s) =
12

(s + 1)(s2 + 0.2s + 1)(s2 + 0.4s + 4)
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Error estimate for the signal scaled model
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Conclusions

• The delta operator is excellent!

• For LMIs the system scaling part of the delta operator seems to be the
most severe part from numerical point of view.
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