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Outline

e Delta instead of shift operator for discrete-time dynamic systems

e Numerical sensitivity of Linear Matrix Inequalities
e lll-conditioned LMI for shorter sampling periods

e Cancellation for shorter sampling periods
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Delta operator

Continuous-time system
T = Acx

Discrete-time system in the shift operator

r(tp41) = Agx(ty)

na, = (hAC)! 2
Ag=ce sz . =1+ hA.+0O(h“) -1 when h—0

i=0 v
Discrete-time system in the delta operator

2(tpy1) —x(lp) _ Ag

ox(ty) =

h_ Iﬂ?(tk) = Asz(ty)

As = . A. when h —0
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Two shift operator models

Ordinary shift operator model
Aq By
Cq Dq

In + hAs hBj

Gq —
Cs Dys

Signal scaled shift operator model. Input u;, = v/hu, output y, = Vhy

In + hAs VhBs
| VRCs  D;

Aq Bq

qu
Cq Dq

The discrete /5, norm then converges to the continuous £> norm

lyall? = 3 yhtun(te) = S v/ )y h
k=0 k=0
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Computing the Hoo NOrm

For a stable discrete-time system G, on shift operator form Gy, the
Hoo NOrmM

|Glloo = max |Gq(e™)]
With input v and output y, the Hso norm is also given by the induced norm

(Gl = sup 41

w70 llull
Then |G| < 7, if and only if there exists a P = P’ > 0 such that
P > A PAq+ CyCy — (AyPBg+ CyDy)
(B,PBy+ D/ Dq — %) (A, PBy+ C.Dg)’
and
B}PBy+ D\,Dg—~° >0

5th Swedish-Chinese Conference on Control, Lund May 31, 2011 p.4




CHALMERS Automation Research Group, S2

Computing the Hso horm using LMIs
Introducing the notation
Mgy, (P) = AyPA; — P+ C,C,
Mg1,(P) = AyPBg+ CyDy
My (P,y) = ByPBy+ DyDg — v°1
we obtain
Mgy, (P) — Mgy, (P)M_2(P,v)M,, (P) < O
Mg,»(P,v) > 0O
A Schur complement then gives the linear matrix inequality (LMI)
Mgy, (P)  Mgy5(P)

MCI12(P) MQQQ(Pa 7)

Minimizing -y satisfying this LMI is a semi-definite program, and the solu-
tion gives the Hso-norm.

MQ(Pvf)/): <O
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Corresponding LMI on delta operator form

Mg, (P) Mg ,(P)
Ms(P,v) = H +
Mg, ,(P) Mgy, (P, 7)
Mg, ,(P) = AgP 4+ PAs + hA5PAs + C5Cs
Ms, (P) = PBs+ hA5PBs 4 C5Ds
Ms;,,(P,v) = hB§PBs + D§Ds — 7°1
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Cancellation in shift operator LMI

For short sampling periods we have A; = I 4+ O(h) and

11 = AgPA;— P4 C,Cqy = (I + O(h))'PI 4+ O(h)) + hC5Cs — P
=P, — P+ O(h) = O(h)

where P, ~ P.

Since Aq = I + Aa where Ap = hAjg this cancellation is avoided by
replacing My,, = Ay PAq — P + C;Cq with

My

Mp,, = AAP + PAp + ARNPAA 4 C (4
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Unbounded LMI solution when h — O

Mg1(P) = AgPh + PhAs + hA5PhAs 4+ C5Cs = My, (Ph)
Mg1,(P) = (I + hAs)PhBs + CsDs = My, ,(Ph)
Mgy, (P,y) = hB§PhBs + DsDs — v°I = My, (Ph, )
Hence, we find that
Mq(P,~) = Ms(P,~)

where P = Ph.
The solution P > 0O to the LMI My (P, ~) < 0 can alternatively be obtained
as
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Semidefinite programming

LMIs are normally solved as convex optimization problems. Introduce the
unknown variables ¢ = [vec(P)’ ~]" which gives following semidefinite
programming problem

min vy
subjectto F'(¢) = diag(—My(P,v), P) >0

where F'(£) € R™*™ is symmetric and m = (2n + n).
Solved by an interior-point method with the barrier function

$(§) = —logdet F (&)

The original criterion ~ is then replaced by the approximation

f(&) = 0y + ¢(§) = 0y — log det F'(§)

where the approximation error is reduced when the parameter 6 is in-
creased.
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lll-conditioned problem

= T2 MsT? = det M, = h™ det Mj
Since
det F(¢) = detdiag(—M,(P,~), P) = (—1)"T™ det M (P, ~) det P
= (—1)"T™up" det Ms(P,~) det P

Is close to zero independent of v when h is small, we have an ill-
conditioned problem for short sampling periods.
Solution: introduce the scaled LMI problem

_1 1
MS(P7’7) — Th QMQ(Pa V)Th ‘= M5(P7 ’7) <0

which gives the same optimal ~ as the shift operator LMI, but without the
singularity problem for small sampling periods.
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Error analysis

Stored relative error using Hadamard (entry-wise) multiplication o
A= (14+€4)0A
Relative error due to subtraction

(A-B) =1 +&)o((L+Ex)e0A-(1+Ep)oB)

Some manipulations then gives

1 1
M(P,y) = T7 (My(Py) + € 0 My(P.) +  diag(Ep © P, Opyxn,) ) T3
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Error estimate

Hence we suggest the following relative error estimate for 4

Y= EvA E~S
67:| O|%7 _|_%

Y0 h
12
Gels) = (52 025 + 1)(s2 + 0.45 + &)
g

10 107 10
Sampling period h
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Error estimate for the signal scaled model

Relative error

Sampling period h

5th Swedish-Chinese Conference on Control, Lund May 31, 2011 p.13




CHALMERS Automation Research Group, S2

Conclusions

e The delta operator is excellent!

e For LMIs the system scaling part of the delta operator seems to be the
most severe part from numerical point of view.
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