Control Design for MEMS Instruments Based on Force Feedback

K. J. Åström

Department of Automatic Control LTH, Lund University

Acknowledgements

 Kimberly Turner Group at UCSB (ME) Laura Oropeza-Ramos (Mexico), Chris Burgner, Zi Yie, Barry Demartini (HP), Kari Moran
 Paul Hansma Group at UCSB (Physics) Johannes Kindt (Veeco), Georg Schitter (Vienna)
 Forrest Brewer Group at UCSB (ECE) Nitin Kataria

> Thank you for introducing me to a fascinating field for control applications

KJÅ: Lectures on Control of Microsystems

- Ontrol Architecture for Force Feedback
- A Tunneling Accelerometer
- Experiments
- Summary

- Interesting and useful devices in dynamic development AFM, Accelerometers, Gyroscopes, Hard disks, Optical memories ...
- Small scale and high Q (low damping)
 Scaling of surface l² vs volume l³: friction important
- Oscillatory (nonlinear) dynamics with low damping
- Noise: Brownian motion, Johnson-Nyquist, tunneling,
- Parameter uncertainty and parameter variations
- Fast sampling MHz, challenging implementation
- Control is often mission critical, noise, robustness, dynamics, nonlinearities all have to be balanced
- Rich area for applying control

Force Feedback

- Classic idea with tremendous impact
- Game changer in instrument design

Open loop, all components matter Bandwidth $\omega_b = \sqrt{k/m}$ Sensitivity = k_a/k Invariant $\omega_b^2 S = k_a/m$

Closed loop, actuator only critical element Bandwidth depends on feedback system Error signal also useful!

- Ontrol Architecture for Force Feedback
- A Tunneling Accelerometer
- Performance Limits
- Summary

Controler Architectuere

Models

$$rac{dx}{dt} = Ax + B_w w + Bu, \qquad y = Cx, \qquad ext{instrument}$$
 $rac{dz}{dt} = A_w z, \qquad w = C_w z, \qquad ext{sensorsignal}$

Standard structure based on Kalman filter and state feedback

$$\begin{aligned} \frac{d\hat{x}}{dt} &= A\hat{x} + B_w C_w \hat{z} + Bu + L_x (y - C\hat{x}) \\ \frac{d\hat{z}}{dt} &= A_w \hat{z} + L_w (y - C\hat{x}) = A_w \hat{z} + L_w (y - \hat{y}) \\ u &= -K_x \hat{x} - K_z \hat{z}. \end{aligned}$$

- Design instrument to make $B_w C_w$ close to B
- Design filter gains L and L_w to shape frequency response
- Design feedback gains K and K_w to give small errors

Sensor Transfer Function

Transfer function from signal w to its estimate \hat{w}

$$G_{\hat{w}w} = (I+F(s))^{-1}F(s), \ F(s) = C_w(sI-A_w)^{-1}L_w(sI-A-L_xC)^{-1}B_w$$

For $A_w = 0$ (constant but unknown or slowly varying acceleration) the expression simplifies to

$$G_{\hat{w}w} = \frac{L_z C(sI - A + L_x C)^{-1} B_w}{s + L_z C(sI - A + L_x C)^{-1} B_w}, \qquad G_{\hat{w}w}(0) = 1$$

- Does not depend on feedback gains K_x and K_z!
- Does not depend on B
- Does depend on filter gains

Many design options:

- Optimize with respect to disturbances and uncertainty
- Shape the frequency response G_{ŵw} (automotive)

- Ontrol Architecture for Force Feedback
- A Tunneling Accelerometer
- Performance Limits
- Summary

The Tunneling Accelerometer

Courtesy of Laura Oropeza-Ramon

Tunneling Tip

Courtesy of Laura Oropeza-Ramon

Block Diagram

Actuator:

$$F=rac{N\epsilon_0h}{d}(V_0+u)^2, \hspace{0.5cm} \delta F=k_a\delta u, \hspace{0.5cm} k_a=2rac{N\epsilon_0hV_0}{d}$$

Mass:
$$m \frac{d^2 z}{dt^2} + c \frac{dz}{dt} + kz = F + mw + n_{th}$$

Tunneling tip: $I = k_{+}^{0} V_{v} e^{-\alpha x_{v}}$

$$=k_t^0 V_v e^{-lpha x \sqrt{\phi}}, \qquad \delta I = k_t I_e \delta x + n_t, \quad k_t = lpha \sqrt{\phi}$$

Amplifier: $V = k_v(RI + n_R)$ (2 nA, simplified)

Noise Sources

- Thermal noise white noise force with spectral density $4ck_BT$ (dissipation fluctuation theorem), *c* damping coefficient, $k_B = 1.38 \times 10^{-23}$ [J/Kelvin] Boltzmann's constant and *T* temperature
- Tunneling noise modeled as shot noise which is white noise with spectral density $q_0 2I$, where $q_0 = 1.6 \times 10^{-19} C$ is the charge of the electron and *I* is the current.
- Model resistors by an ideal resistor with a voltage source in series representing the Johnson-Nyquist noise which is white noise with spectral density $4k_BTR$
- Amplifier noise
- 1/f noise

Simplified Block Diagram

Physical interpretations!

- Ontrol Architecture for Force Feedback
- A Tunneling Accelerometer
- Experiments
- Summary

First Attempt

- Initialize Initiate tunneling, get from 1 µm to 1 nm safely
- Switched integrating controller
- Regulate maintain tunneling

K. J. Åström

Control Design for MEMS InstrumentsBased on Force Feedba

Hunt for Noise Sources

- Originally very high noise levels
- Guide-lines from physical modeling very useful

- Redesign electronics: preamplifier, DAC with better resolution
- Replace PC by National Instruments Compact Rio

Experimental Set-up

Courtesy of Chris Burgner

Improved Electronics

Control Signal has Long Term Drift 1/f

- Ontrol Architecture for Force Feedback
- A Tunneling Accelerometer
- Experiments
- Summary

Summary

- Interesting application area for control
- Systems with low damping $Q = \frac{1}{2\zeta}$ up to 1000

Truxal 1961: The design of feedback systems to effect satisfactorily the control of *very lightly damped* physical systems is perhaps the most basic of the difficult control problems.

Noise

Thermal, Johnson-Nyquist, tunneling, 1/f

- Integrated systems and control design
- A design framework

Controller architecture Design trade-offs High sampling rates MHz, analog or FPGA High precision $\sigma = 0.3$ Å

References

H. Rockstad, T. Kenny, J. Reynolds, W. Kaiser, and T. Gabrielson, A miniature high-sensitivity broad-band accelerometer based on electron tunneling transducer. Sensors and Actuators A, vol. 43, January 1994.

P. Hartwell, F. Bertsch, S. Miller, K. Turner, and N. MacDonald, Single mask lateral tunneling accelerometer. MEMS'98 pp 340-344, Nov 1997

L.A. Oropeza-Ramos, N. Kataria, C.B. Burgner, K.J. Åström, F. Brewer and K.L. Turner. Noise Analysis of a Tunneling Accelerometer base on state space stochastic theory. Hilton Head 2008.

Z. Yie, N. Kataria, C. Burgner, K. J. Åström, F. Brewer, K. Turner. Control Design for Force Balance Sensors. ACC 2009

T. Gabrielson Mechanical-thermal noise in micromachined acoustic and vibration sensors. IEEE Trans. Electron Devices. vol 40 1003, 903-909.

K. J. Åström. Introduction to Stochastic Control Theory. Academic Press 1970, reprint Dover, NewYork, 2006.

Parameters

Boltzmann's constant	k_B	$1.3807 imes10^{-23}~{ m J/K}$
Charge of electron	q_0	$1.602 imes10^{-19}~{ m C}$
Tunneling constant	$\alpha < 0$	1.025 $1/Å\sqrt{eV}$
Tunneling barrier	ϕ	0.05 eV
Temperature	T	r ∖⊴∕ \ 293 K
Mass	m	4.917 μg
Resonant frequency	f_0	4.2 kHz
Q-value	Q	10
Actuator gain	k_a	$9.2 imes10^{-7}~{ m N/V}$
Tunneling gain	k_t	4 A/m
Preamp resistance	R	10.2 ΜΩ
Voltage gain	k_v	2
Sensor gain	$k_s = k_t k_v R$	21.6 MV/m