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Can Systems be Certified Distributively?

Componentwise performance verification without global model?
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o A Scalable Robustness Test
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A Matrix Decomposition Theorem

The sparse matrix on the left is positive semi-definite if and only
if it can be written as a sum of positive semi-definite matrices
with the structure on the right.
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Proof idea

The decomposition follows immediately from the band structure
of the Cholesky factors:
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[Martin and Wilkinson, 1965]
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Example

The simplest decomposition is to just split each coefficient
equally between the squares where it belong. This could work if
the matrix is diagonally dominant:
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Generalization

Cholesky factors inherit the sparsity structure of the symmetric
matrix if and only if the sparsity pattern corresponds to a
“chordal” graph.
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[Blair & Peyton, An introduction to chordal graphs and clique trees, 1992]
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Example: Non-chordal graph
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Example: Chordal graphs

If T is a tree, then T* is chordal for every k > 1.
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A Theorem on Positive Extensions

A matrix with entries specified according to a chordal graph has
a positive definite completion if and only if all fully specified
principal minors are positive definite. [Grone, et.al, 1984]
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A System with Tridiagonal Structure
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A Sparse Stability Test

For the sparse matrix A, let the left hand side illustrate the
structure of (sI — A)*(sI — A). Then the matrix is stable if and
only if the right hand side split can be done with all squares
positive definite for s in the right half plane.

(sI—A)*(sI—A)

Hence global stability can always be verified by local tests!
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A Sparse Gain Bound

Solutions to x(t) = Ax(t) + w(t), x(0) = 0 satisfy

/|x(t)|2dt<y/ w(t)|dt

o X X ox o 0

if and only if

y2(sI-A)*(sI-A)-1I

where the terms on the right hand side are positive definite for s
in the right half plane.
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A Sparse Passivity Test

Suppose

*=Ax+ Bx+w x(0)=0
y=Cx

Then

/ ' (y2u(t)y(t) + |w(t)|2) dt>0  forallu,w,T
0

if and only if the matrix

(sI —A)*(sI—A) y2CT —(sI — A)*B
y2C — B*(sI — A) BTB

is positive semi-definite for Res > 0.

Passivity can be tested componentwise without conservatism!
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Robustness Analysis for Chained System
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Many robustness analysis problems can be reduced to proving that
(I — A(s)G(s))Lis stable for A = diag{d1,...,5,} with |5;(iw)| < 1.
This can be done by finding X (o) = diag{x1(®),...,xn(®)} > 0 with
X (w) > G(iw)X (0)G (iw)* where

g1 hl 0 0 0
fi g2 ha O 0
GGo)=|0 fo . . 0

0 0 B Im—-1 hm—l
0 0 0 fm—l am

Note that each x; influences at most nine elements of X — GX G*.
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Scalable Distributed Computations
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The matrix GX G* — X is negative definite if and only if there exist
¥i, 2, w; such that the following are negative definite:
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Conclusions

@ Distributed Positive Test for Matrices
@ Distributed Nonconservative System Verification

@ Scalable Robustness Tests for Heterogeneous Systems
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