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Can Systems be Certified Distributively?

Componentwise performance verification without global model?
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Outline

○ Introduction

• Distributed Positive Test for Matrices

○ Distributed Nonconservative System Verification

○ A Scalable Robustness Test
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A Matrix Decomposition Theorem

The sparse matrix on the left is positive semi-definite if and only
if it can be written as a sum of positive semi-definite matrices
with the structure on the right.
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Proof idea

The decomposition follows immediately from the band structure
of the Cholesky factors:
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[Martin and Wilkinson, 1965]
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Example

The simplest decomposition is to just split each coefficient
equally between the squares where it belong. This could work if
the matrix is diagonally dominant:
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Generalization

Cholesky factors inherit the sparsity structure of the symmetric
matrix if and only if the sparsity pattern corresponds to a
“chordal” graph.
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[Blair & Peyton, An introduction to chordal graphs and clique trees, 1992]
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Example: Non-chordal graph
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Example: Chordal graphs

If T is a tree, then T k is chordal for every k ≥ 1.

T T2
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A Theorem on Positive Extensions

A matrix with entries specified according to a chordal graph has
a positive definite completion if and only if all fully specified
principal minors are positive definite. [Grone, et.al, 1984]
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A System with Tridiagonal Structure
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A Sparse Stability Test

For the sparse matrix A, let the left hand side illustrate the
structure of (sI − A)∗(sI − A). Then the matrix is stable if and
only if the right hand side split can be done with all squares
positive definite for s in the right half plane.
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(sI−A)∗(sI−A)

Hence global stability can always be verified by local tests!
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A Sparse Gain Bound

Solutions to ẋ(t) = Ax(t) +w(t), x(0) = 0 satisfy

∫ T

0

px(t)p2dt ≤ γ 2
∫ T

0

pw(t)p2dt

if and only if
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γ 2(sI−A)∗(sI−A)−I

where the terms on the right hand side are positive definite for s
in the right half plane.
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A Sparse Passivity Test

Suppose

ẋ = Ax + Bx +w x(0) = 0

y= Cx

Then
∫ T

0

(

γ 2u(t)y(t) + pw(t)p2
)

dt ≥ 0 for all u,w,T

if and only if the matrix
[
(sI − A)∗(sI − A) γ 2CT − (sI − A)∗B

γ 2C − B∗(sI − A) BTB

]

is positive semi-definite for Re s ≥ 0.

Passivity can be tested componentwise without conservatism!
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Robustness Analysis for Chained System
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Many robustness analysis problems can be reduced to proving that
(I − ∆(s)G(s))−1 is stable for ∆ = diag{δ 1, . . . ,δm} with pδ i(iω )p ≤ 1.
This can be done by finding X (ω ) = diag{x1(ω ), . . . , xm(ω )} ≻ 0 with
X (ω ) ≻ G(iω )X (ω )G(iω )∗ where
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Note that each xi influences at most nine elements of X − GXG∗.
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Scalable Distributed Computations
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The matrix GXG∗ − X is negative definite if and only if there exist
yi, zi,wi such that the following are negative definite:
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Conclusions

Distributed Positive Test for Matrices

Distributed Nonconservative System Verification

Scalable Robustness Tests for Heterogeneous Systems

Anders Rantzer Scalable Analysis Methods for Sparse Large-sc ale Systems


