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Stochastic control problem

dr = A(t)x(t)dt + B (t)u(t)dt + By(t)dw
dy = C(t)z(t)dt + D(t)dw

Stochastic
> System

T K

Determine control law 7 : y — u that minimizes

J(u):E{ /D z(t)Q(t)z(t)dt + /.; u(t)’R(t)u(t}dﬁ-|—:f:(T)’S:t:[T)}



Separation principle

Under suitable assumptions on the class of admissible control
m .y — u, the optimal control is

u(t) = K(t)z(1)
where Z(t) = E{z(t) | Y.},

dz = A(t)2(t)dt + By (t)u(t)dt
+L(t)(dy — C(t)3(t)dt)
#(0) = 0

with K(t) and L(t) computed via a pair of dual Riccati equations.

Just assuming that u(t) is Y,-measurable

9t = J{y(s); 0<s<t} for each ¢ does not work.




Completion of squares

J(u) = {m(ﬂ)’P(D [ (u— Kz) R(u — K:r}ﬂl’t} /: tr(B5PB;)dt

where

— —A'P—PA+PBR'B\P-Q

{P(T} =

K(t) := —R(t)"'Bi(t) P(t).

With complete state information:

unptjmal (t)

K(t)z(t)




Incomplete state information
E fﬂ T(u — Kz)R(u— Kz)dt
—E fn T[(u — K#)R(u— K#)|dt + tr(K'RKY)
where 2(t) := E{#(t)z(t)'}.

e Can we conclude that u = K is optimal?

No, not without further assumtions.
> may depend on the choice of control.

How?



The tricky point

Due to linearity

z(t) = zo(t) + /{; ®(t, s)B;(s)u(s)ds

the control term cancels out:
Z(t) = Zo(t)

where Zo(t) := E{zo(t) | Y,}.

= :-_"I[.(t) . fi‘ﬂ(t):,

The filtration Y;, and hence Z;, might depend on the choice of control w.

We would like to have

Yo=Y,

Stochastic open loop (SOL):
Limit control so as to be

adapted to {Y%}.




[Linear feedback
u(t) = Udeterministic T /'; | F(t,7)dy

Then the Gaussian character is preserved,
and it can be shown that YV, = }’f Hence,

di = (A— LC)idt + (B, — LD)dw
#(0) = z(0)

X(t) := E{Z(t)Z(t)'} is independent of u



Lipschitz continuous feedback

Kushner (1967) considered the class of Lipschitz control laws

where

£(t) := E{zo(t) | YO} + / ®(t, s)Bi1(s)u(s)ds

0

Wonham (1968): If C(f) is square and invertible, then u(t) = K(t)Z(t)
is optimal in the class of Lipschitz control laws of the form

u(t) = ¥(t, &(t))

Fleming & Rishel (1975) removed the assumption on C(%);
Lipschitz in y; simpler proof.



Delay 1n the control action

When u(t) is a function of y(7); 0 <7 <t —¢,
Y=Y,

This implies that Y; = Y? always holds in the usual (predictive)
discrete-time formulation.

e However, taking € — 0 and general nonlinear feedback, there

is no guarantee that Y, is left-continuous

e “Proofs” of the separation theorem (in some popular textbooks)
using such limits are circular.



Weak solutions

Davis & Varaya (1972): If we are allowed to consider
weak solutions of

dr = A(t)z(t)dt + B, (t)u(t)dt + By(t)dw

we can change the probability measure (via a Girsanov
transformation) so that

dib := By (t)u(t)dt + By(t)dw

becomes a new Wiener process, which (under the new
probability measure) can be assumed to be unaffected
by the control.

Unclear what is the engineering interpretion of this.



Signals and systems

Signals :
sample paths; possibly having bounded discontinuities
in D (cadlag — Skorokhod space)

Systems:
measurable nonanticipatory maps

Examples:
i) SDE’s that have strong solutions
ii) nonlinearities, hysteresis (C' — D), etc.
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A general linear stochastic system

Z() 20
+ 4" L+ 2
5 g () S H | —— S

-
X .

= z(t) + fu dr [f=grH
y(t) Hz(t)

where

g : (t’ﬂ)H_/ﬂ G(t, T)u(T)dT

E.g., z(t) = (;Eg) and H = [0, I]



Well-posedness of feedback loop

DEF. A feedback loop o
+y 7T oz
2=z + f(z) ”
is well-posed if it has a unique solution in D
for all zp € D and (1 — f)~! is a system. f
Zt - Zﬂ

(1— f) and 20=2z— f(z) and :
(1 — f)~! systems ‘ =(1-f)1z ‘ for t € [0, T
No new information is created by loop

Complete state information: Y, = Z;; i.e., condition Y, = Y? trivial.



What about incomplete state
information?

w 0
21 = (U) , 23 = ( ) generate the same filtrations, i.e., ZE” = ZEE}

However, for H = (1 0),

y1=(1 0) (15’) e =(1 0) Gjﬁ) — () 4y

20

Lo+

LEMMA If the feedback loop is well-posed g H

and the readout map H is linear, then
Y=Y fort € [0,T].




The separation principle

dx = A(t)z(t)dt + By(t)u(t)dt + Bs(t)dw
dy = C(t)x(t)dt + D(t)dw

Wiener process

J(u)zE{ fn z(t) Q(t)z(t)dt + fa u(t)’R[t)u[t)dt—I—m(T)’Sm(T)}

THEOREM There is a unique 7 : y + u in the class
of well-posed control laws that minimizes J(u), and
the optimal control is u(f) = K(t)Z(t), where £ is
given by the Kalman filter.




The separation principle (general)

dx = A(t)z(t)dt + By(t)u(t)dt + Bs(t)dw
dy = C(t)x(t)dt + D(t)dw

semimartingale

THEOREM There is a unique 7 : ¥ — % in the class
of well-posed control laws that minimizes J(u), and
the optimal control is u(f) = K(t)Z(t), where £ is
the conditional mean Z(t) = E{z(t) | Y;:}.

e strong solutions, but no need for Lipschitz continuity
e signals defined samplewise
e K(t) is still given by a Riccati equation

e in general, the difficult part is constructing #(t) = E{z(¢) | Y}



Example:
Step change 1n white noise

1 t=>71
v(t) = { with 7 exponentially distributed
0 t<T

Problem: Find a feedback law 7 : 4 — u for the system

dr = u(t)dt + dv, z(0) =0
dy = z(t)dt + dw

that minimizes E { fDT(mE + uz)dt}*




Example: Solution
e Optimal feedback:
ul(t) = ~p(t)2(1)
where p = p* — 1 = p(t) = tanh(T — ¢).
e Wonham-Shiryaev filter:

di = (1 — &)dt + udt + £(1 — £)(dy — 2dt)

e Cost: Since [v,v|(t) = v(t),

E{ L Tp(t)d[ﬂ,ﬂ](t)} _ E{ / Tp(t)dt}

T
= In(coshT)(1 —e 1) — f In(cosht)e*dt.
0



Key points

Subject historically marred by incomplete
arguments or lengthy derivations

The natural (engineering) way of thinking about
feedback control 1s 1n terms of signals

The natural (and simple) assumption of well-
posedness 1mplies that the usual linear feedback
control 1s better than any (reasonable) nonlinear
control law

The Separation Principle holds with
semimartingale noise with possible jumps



