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Chapter 1

Introduction

The ACTORS project is focused on resource-constrained devices, where multiple
data flow applications with real-time demands run concurrently and compete for
the available resources. Data Flow is a computational model that is specially suited
for multimedia applications such as streamed video or audio applications, e.g.,
MPEG decoders and encoders. However, it is also applicable to, e.g., signal pro-
cessing, feedback control, and computer vision.

The data flow parts of these applications will be written in the CAL language.
CAL is a data flow programming language, where so called actors work on a stream
of data tokens which flow between them [1]. Through this approach the data de-
pendencies are explicitly codified in the software. This makes it possible to auto-
matically partition potentially parallel parts of the software. This is important since
the trend in CPU development is towards multicore systems. In order to fully ex-
ploit the available processing power on such systems it is necessary to parallelize
the software. Writing parallel software is hard, and even harder for many-core sys-
tems with a number of cores » 2. Using a data flow language as CAL takes this
burden away from the developer and the parallelization is done by the compiler
and the tool chain.

Without special means threads or processes which run in parallel on one or
more cores will compete for the available resources, such as CPU time. In order to
protect threads or processes from influencing and disturbing each other, which can
potentially decrease the overall quality of service of the system, in ACTORS there
will be resource reservations provided by the operating system. These reserva-
tions will reserve CPU time exclusively for use by the designated threads, so these
threads are to some degree isolated from each other.

In order to achieve a maximum overall quality of the system there will be
a system-global resource manager. This resource manager will have knowledge
about the resource requirements of the participating applications and distribute
the resources among them. This means it will decide about the reservation sizes
for the applications, notify the applications about this and adjust the reservations
provided by the operating system accordingly. The resource manager will not re-
act to minor temporary fluctuations, but only to major structural changes. There
will be two types of applications: applications which offer discrete quality levels
which they can provide, and applications which offer a continuous mapping be-
tween available resources and achieved quality. Both types will be supported in
ACTORS. How their properties are represented is discussed in this deliverable.

The ACTORS runtime architecture uses Linux as the operating system, option-
ally extended by patches which enable resource reservation.
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Deliverable context

This deliverable is the result of task 3.1 “System State Abstractions for Control”,
which is part of workpackage 3 “Adaptive Resource Management”. This is an in-
termediate version of the deliverable, the final version will be released towards the
end of the ACTORS projects.

This deliverable serves two purposes, first it gives an overview of the ACTORS
runtime architecture, and second, it introduces the ACTORS resource manager. The
current version (1.1) contains an updated description of the overall ACTORS archi-
tecture including the run-time architecture, compared to Version 1.0. It also defines
the terminology used in ACTORS. The document should be considered as a work-
ing document that will be continuously updated as the ACTORS project proceeds.
However, also in its current version it is still the deliverable that gives the best
overview of the ACTORS run-time architecture. As such, this deliverable is the ba-
sis for understanding how the other components in the ACTORS project fit together
and how they will work together.

Together with deliverables D1f “Interface Specification” and D4b “RBS Speci-
fication” this deliverable documents the resource manager, how application prop-
erties related to their real-time demands will be represented and how the resource
reservations will be realized by the operating system. The recommended order of
reading is D3a, D1f, and D4b. The results of this deliverable are necessary for all
other tasks of workpackage 3, since they all are closely related to the resource man-
ager. Beside those, also tasks 1.5 “Requirements/QoS Interface” and 4.2 “Match-
ing Reservation Schemes with System States”, which deal with the interfaces to
the resource manager, depend on this deliverable. In workpackage 2 “Actor Code
Generation” mainly task 2.2 is related to this deliverable. In task 2.2 “OpenDF Ex-
tensions” the runtime for executing CAL applications will be developed. In this
runtime system actors which communicate with the ACTORS resource manager
have to be implemented.

Chapter two introduces the overall architecture and components of an ACTORS
system. This is necessary for the understanding of the whole project. Chapter three
documents the application interface of the resource manager and how it will be
used to represent requirements of real-time applications. Chapter four shows how
we envision how this interface can be used by different types of applications.
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Chapter 2

Runtime Architecture of ACTORS

2.1 Architecture Overview

The ACTORS run-time architecture consists of three major components, which will
be discussed in the following sections:

• CAL Applications

• Resource Manager

• Operating System

CAL Applications

The embedded devices considered in ACTORS will typically contain a mixture of
different application types. Some applications will have very soft, or no, real-time
requirements whereas others will have hard real-time requirements. Some appli-
cations will be implemented in CAL whereas others will be implemented using
conventional techniques. Some applications will be aware of the ACTORS resource
reservation framework and may interface to it, whereas other applications are com-
pletely ignorant of this. The long-term ambition of ACTORS is to be able to host
all of these applications, i.e., it should be possible also for non-CAL applications to
interface to the resource reservation framework. However, to begin with the focus
will be ACTORS-aware CAL-applications. This is what will be described in this
report.

A CAL application is an application that is written in CAL. The basic abstrac-
tion in CAL is an actor. Actors communicate asynchronously with other actors by
consuming tokens from input ports and producing tokens at output ports. The out-
put port of one actor may be connected to the input port of another actor via a FIFO
buffer, forming a network of actors, i.e., a CAL network. The computations within
an actor are performed through a sequence of firings. In each firing the actor may
consume tokens from input ports, may modify its internal state, and may produce
tokens at output ports. The computations performed within a firing are defined by
an action. An actor, hence, internally consists of one or several actions. In general,
the order in which the actions should be fired can only be determined dynamically.
The reason for this can, e.g., be data-dependent actions.

The level of expressiveness of CAL is high in the sense that it is possible to cre-
ate CAL networks that correspond to a variety of different data flow model classes
e.g., synchronous data flow (SDF) models [2] and dynamic data flow (DDF) mod-
els [3]. Of particular interest here is the SDF model. In a SDF network the number
of tokens consumed and produced during each firing is constant. This means that
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it is possible to determine the firing order statically. In this case actors in the net-
work can be merged into a single actor and the intermediate FIFO buffers can be
removed. Also if an entire network is not SDF it is common that it contains regions
that are SDF, so called statically schedulable regions. In that case the actors within a
region can be merged. It is also possible that a statically schedulable region only
contains parts of one or several actors, i.e., some of the actions and their associated
ports. Alternatively, it may be desirable to split an actor into several actors to bet-
ter express fine-grained parallelism when the target platform is an FPGA. The CAL
network after these transformations will be referred to as the data flow graph.

Identifying a statically schedulable region and merging actors or actions makes
it possible to create sequential binary code that due to the removal of the intermedi-
ate buffers can execute faster on a single processor than to schedule the execution
of the corresponding actors dynamically on the same processor. However, on a
multi-core platform this may not necessarily be the case. Consider the example in
Fig. 2.1. The example consists of four actors in series. The number associated with

Figure 2.1: A CAL example consisting of four actors in series. The CAL network is a
statically schedulable region that can be merged into a single actor that is executed
on a single core. The actors can, however, also be kept separate and pipeline their
execution on different cores.

the ports indicate the number of tokens consumed or produced. Since the network
is SDF it can be merged into a single actor in which the actors A, B, C and D are
connected in series. However, with four cores all the actors can be pipelined giv-
ing a throughput that theoretically is four times as high as in the single core case.
Hence, whether to merge statically schedulable regions into single actors or not
depends both on the application demands and on the execution platform charac-
teristics. In ACTORS this decision is left to the model compiler developed in WP1,
which, through the help of interaction from the human developer, will decide this
and other related issues.

The compiled actors are the binary representations of of the actors in the data
flow graph. A compiled actor is a set of instructions to be executed sequentially on
a single processor. No parallelism is possible within a compiled actor. A task is an
instance of a compiled actor with a unique set of ports and state.
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In ACTORS a distinction is made between two types of CAL applications:

• dynamic CAL applications, and

• static CAL applications.

The dynamic case is the general case corresponding to, e.g, most multimedia stream-
ing applications. Here the execution is highly data-dependent. Although statically
schedulable regions may exist, it is not possible to schedule the entire CAL network
statically. In, e.g., feedback control applications, however, the CAL networks are,
in general, statically schedulable. In this case the data flow graph can be translated
into a static precedence relation described by a Directed Acyclic Graph (DAG). This
will be referred to as an job precedence graph (JP). In general the data flow graph and
the corresponding job precedence graph are not identical. When the job precedence
graph is created actors in the data flow graph typically need to be duplicated. Also,
the transformation from data flow graph to job precedence is not unique. Consider
the example in Fig. 2.2. Here each execution of the A actor produces one token.

Figure 2.2: A CAL data flow graph for a static application. Depending on whether
the A actor has internal state or not two different job precedence graphs are possi-
ble.

The B actor, however, needs two input tokens in order to execute. Hence, each ex-
ecution of B must be preceded by two executions of A. If the A actor has internal
state that is modified then the two A executions must be performed in series (the
left case). If, not they may be performed in parallel (the right case). An invocation
of a task is referred to as a job, hence the name job precedence graph.

The execution of a CAL application is governed by the associated CAL runtime
system. The runtime system, or rather the application-dependent part of it, is gen-
erated by the model compiler. The execution model is different for the two main
classes of CAL applications.

For static CAL applications with periodic or sporadic execution and where re-
alistic WCET estimates are available it is possible to apply schedulability theory to
check whether the applications will meet their deadlines or not. For these applica-
tions, the JP is known a priori and can be analyzed off-line as a part of the model
compilation. The analysis produces the minimum number of serialized (totally or-
dered) sets of jobs, or flows, that can be accommodated on sequential machines,
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with given computational demand. Each flow is allocated to a virtual processor, a
uni-processor reservation characterized by a bandwidth α ≤ 1. The parameters
of the virtual processor are derived as a function of the computational demand to
meet the application deadline. The CAL runtime environment generates eligible
jobs according to available tokens and allocate them to the proper virtual processor
according to the corresponding flow (following a precomputed table).

In the case of dynamic CAL applications the run-time system consists of two
parts, the actor activator and the run-time system dispatcher that selects which ac-
tive actor to execute on which virtual processor. The actor activator activates ac-
tors as input data becomes available by marking them as ready for execution. The
dispatcher repeatedly selects an active actor according to some policy and then
executes it until completion on some virtual processor. For dynamic applications
it is not useful to have more virtual processors than the number of cores available.
One way of implementing the dispatcher is by having as many identical dispatcher
threads as there are cores. Each of these threads executes within a dedicated virtual
processor that is statically allocated to a particular core. The dispatcher threads ex-
ecutes in an infinite loop where they repeatedly select an active actor from the data
flow graph and execute it until completion. During execution of the actor new
tokens will be generated at output ports which will in turn activate new actors.

The different execution models for static and dynamic CAL applications have
certain implications. For example, for static applications different invocations (jobs)
of the same actor will execute in the same virtual processor, and, hence, on the same
core. For dynamic applications it is the scheduling policy of the dispatcher that de-
cides which virtual processor will be used. One option is to use the first available
virtual processor, i.e., different invocations of the same actor are not bound to a
particular virtual processor.

In addition to being responsible for the execution of CAL actors the runtime
should also be able to execute external actors written in other languages, that ei-
ther are linked in from separate libraries or loaded at run-time. One example of
this type of actors are the system actors, whose purpose is to provide a means for
communication between the CAL application and the resource manager and the
operating system. Using these actors the applications can, e.g., announce their re-
source requirements to the resource manager and receive the information about the
allocated reservations for them.

Application Adaptation

Applications executing on the ACTORS platform, whether they are CAL applica-
tions or general applications, can provide different amount of support for resource
and quality adaptation. In the normal case we will assume that an application
supports several quality levels consuming different amount of resources at the dif-
ferent levels. This type of application will be referred to as an adaptive application.
An adaptive application informs the resource manager about its possible quality
levels and the resource manager in return informs the application about at which
level it should execute. Different service levels are achieved by, e.g., changing op-
erating mode, assigning new values to some application-specific execution-related
parameters, or changing the application’s execution rate. During execution the ap-
plication estimates its perceived quality and informs the resource manager if the
allotted resources are sufficient or not. It is also possible for an adaptive appli-
cation to contain an internal feedback loop that controls the amount of resources
used and, hence, the quality obtained. The service level decided by the resource
manager can in this case be viewed as a setpoint signal for the internal controller.
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A non-adaptive application on the contrary has no means that it can use to execute
at different quality levels and thereby consuming different amounts of resources.
A non-adaptive application could either be ACTORS-aware or ACTORS-unaware.
An ACTORS-aware application will inform the resource manager that it only sup-
ports a single quality/resource level. An ACTORS-unaware application will not
provide any quality/resource information to the resource manager. In this case
the resource manager will simply have to provide some initial guessed amount of
resources to the application and then rely on the feedback for adjusting this to a
suitable level.

The Resource Manager

The resource manager is the central component which has comprehensive knowl-
edge about the system and which communicates with all other components. This
means the resource manager

• knows which applications that should execute.

• knows which quality levels the applications provide and their resource de-
mands.

• knows at which quality level the applications are currently running.

• knows how important the applications for the overall quality of the system
are.

• knows the amount of resources (e.g. processing capacity) the current system
provides.

• will have a way to “translate” the abstract, i.e. portable resource demands of
the applications to actual resources of the current system.

• knows the current resource usage of the individual applications, reported by
the operating system.

All applications running in the system have to register at the resource manager,
so that the resource manager knows about them. The resource manager queries
the applications for their resource requirements and it monitors their actual re-
source consumption. Based on this information it decides using some optimiza-
tion/control logic how to distribute the reservations so that an optimal overall sys-
tem performance is achieved.

In order not to overload the resource manager and to provide strong encap-
sulation and modularity, the interface between the applications and the resource
manager will be a “slow” interface, only major changes will be communicated
there. The resource manager will only react to qualitative changes, small quan-
titative changes will be handled locally in the applications.

There are two options how the resource manager can be implemented. The re-
source manager can be a daemon running in user space, talking on one side with
the applications and on the other side with the resource reservation implementa-
tion in the kernel. This will make development of the resource manager itself and
the control and optimization logic easier,and more convenient development tools
are available. It will also be possible to support different resource reservation im-
plementations in the kernel. On the other hand there will be some communication
overhead.
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The other option is to integrate the resource manager directly in the kernel. This
will mean less overhead and in some points the communication with the applica-
tions will be easier, e.g. they would not have to explicitly register, since the kernel
knows about them anyway. But it will make developing the resource manager
harder and it will be harder to support multiple implementations in the kernel, as
e.g. CFS and partitioned EDF.

The Operating System

A requirement for the operating system for the use in ACTORS is that it provides
support for resource reservations, at least for the resource CPU time. In more detail
this means:

• resource reservation support for CPU time, i.e. limit CPU usage per processes

• support for defining the time granularity for the reservations

• multicore support

• support for the ARM architecture

• per reservation reporting of resource usage to the userspace

The ACTORS resource manager will use these functions to monitor the resource
usage of the applications and distribute the resources among them, so that the over-
all quality of service of the system is maximized.

The operating system used for ACTORS will be Linux. The Linux kernel is
a UNIX-like general purpose operating system kernel, optimized for throughput
and average performance. The most current version is 2.6.28, released December
24th, 2008. Since a few years there are multiple projects working on improving the
real-time characteristics of Linux. One or more of these approaches will be used in
ACTORS. The following will give a short overview over the approaches which are
related to CPU resource reservations. None of the approaches right now fulfills all
requirements ACTORS has, so there is no clear best candidate. Due to this an inter-
face between the resource manager and the resource reservation implementation is
planned, which abstracts the differences away. This way the resource manager can
talk to the same interface, no matter which implementation is actually used.

Linux Control Groups

Since version 2.6.25, released April 17th, 2008, the Linux kernel comes with an op-
tion to enable the so called Control Groups (cgroups). "Control Groups provide a
mechanism for aggregating/partitioning sets of tasks, and all their future children, into hier-
archical groups with specialized behaviour." (from linux/Documentation/cgroups/cgroups.txt)
Different parts of the Linux kernel can then support cgroups to control the usage
of a certain resource by these groups of processes [4]. In principle, this enables to
control the usage of many kinds of resources by processes. Currently, the cgroups
interface is used only to control the usage of processor and memory, but in the very
next future it may be used to control also I/O and networking.

Since version 2.6.24 Linux uses the Completely Fair Scheduler (CFS). CFS has
been extended to support Control Groups, which means it is able to restrict the
CPU usage of such control groups. This is an interesting feature for ACTORS, since
it makes it possible to restrict groups of processes to some percentage of the avail-
able CPU time. This works quite, but not completely exact, i.e. the given percentage
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is met by a few percents more or less. A downside of the current implementation
is that only one global period is available, i.e. the percentage of CPU time is for all
processes realized over the same period. This is not ideal, since different applica-
tions can require different periods. There is basic support for multicore systems,
but this is not yet mature right now. An advantage of the control groups is that it
is part of the mainline kernel and it is actively being worked on, so it may become
even more useful for ACTORS during the project.

Aquosa

AQuoSA (Adaptive Quality of Service Architecture) is an open architecture for sup-
porting adaptive Quality of Service functionality in the Linux kernel. It features a
flexible, portable, lightweight and open architecture for supporting QoS related ser-
vices on the top of Linux. The architecture is well founded on formal scheduling
analysis and control theoretical results. A key feature of AQuoSA is the resource
reservation layer that is capable of dynamically adapting the CPU allocation for
QoS aware applications based on their run-time requirements. In order to provide
such functionality, AQuoSA embeds a kernel-level CPU scheduler implementing
the CBS resource reservation mechanism for the CPU, which gives the ability to
the Linux kernel to realize (partially) temporal isolation among the tasks running
within the system [5]. Aquosa also supports adapting the resource reservations to
the actual CPU requirement by using an integrated feedback control system, which
monitors the current resource consumption and adjusts the reservations accord-
ingly.

AQuoSA is implemented as a patch to the Linux kernel, version 2.6.22 and sup-
ports currently the x86 architecture. The ARM architecture and multicore systems
are not supported in the latest release from January 2008. AQuoSA is developed
as part of the FRESCOR project [6] funded in part by the European Union’s Sixth
Framework Programme.

Litmus

Litmus (Linux Testbed for Multiprocessor Scheduling in Real-Time Systems) is also
an extension to the Linux kernel [7]. It focuses on multicore systems and syn-
chronization. For this it implements several multicore scheduling algorithms, e.g.
Global EDF, Partitioned EDF and Pfair. Recently it has been extended to support
Adaptive Global EDF (AGEDF) using feedback predictors to predict the execution
times of jobs and switch between different service levels of these tasks [8].

Litmus is also implemented as a patch to the Linux kernel, version 2.6.24 and
supports currently the x86 and Sparc architectures. The CBS resource reservation
mechanism is currently not implemented in Litmus.

Partitioned EDF

A partitioned EDF-based scheduler with support for CBS-like CPU-time reserva-
tions is currently being implemented in ACTORS. A new scheduling class, SCHED_EDF
is introduced. Tasks executing under this class will be executed before any other
Linux tasks. This combined scheduler and reservation system will be the main
target for the ACTORS architecture.

More details about SCHED_EDF and reservation based scheduling can be found
in deliverable D4b “RBS Specification”.
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Architecture Diagrams

An overview over the architecture can be seen in 2.3, it shows the components and
interfaces an ACTORS system consists of.

<<component>>
Cal Application

<<component>>
ResourceManager

<<component>>
OperatingSystem

<<component>>
ResourceReservation

<<component>>
Global Optimizer/Contr...

<<component>>
ActuatorActor

<<component>>
Adaptive actors

<<component>>
SensorActor

System actors, 
gateway between CAL actors 
and the system

Optimization and feedback 
control logic, isolated from the 
implementation details of the 
interfaces

Everything inside here is written 
in Cal, except the "system actors", 
which are written e.g. in C

Video codecs, control loops, 
etc.

These interfaces enable 
the resource manager to 
support different resource 
reservation implementations

Candidates control groups 
with CFS and SCHED_EDF

(alpha,delta)

ResourceConsumption

QualityMeasurementQualitySettings

ResourceReservation

Figure 2.3: ACTORS architecture overview.

An alternative view is provided in Fig. 2.4. Here a snapshot of one concrete AC-
TORS system at runtime is shown, i.e. it contains instances of the components from
2.3. In this figure it is assumed that partitioned EDF scheduling is used together
with bandwidth servers based on, e.g., CBS. The figure contains one static and one
dynamic CAL application.

2.2 Feedback Mechanisms

The ACTORS resource management system contains at least three different types
of feedback mechanisms:

• Global resource distribution
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Figure 2.4: ACTORS architecture layers.

• Reservation feedback

• Resource feedback

The global resource distribution can be seen as a combined optimization and
feedback control problem. Here the resource levels for the different applications
are decided based on the quality tables provided and the optimization objective.
The feedback appears in the form of information from the applications that they
have modified their execution characteristics or that the current level of resources
allocated is insufficient, or that a new application has arrived. The control loop is
typically executed fairly seldom and in an event-driven fashion.

The reservation feedback loops are used to dynamically adapt the size of the
reservations for the applications. Based on the how much of the allocated resources
that really are used the size of the reservations are adjusted. Each reservation has
its own feedback loop which is executed either at the period of the reservation or at
some multiple of this period. In the latter case the measured resource consumption
error has to be averaged. Since a reservation is determined by two parameters, the
bandwidth α and the delay ∆, the possibility to use two feedback loops for each
reservation will be investigated.

The resource feedback loops, finally, are optionally used in adaptive applica-
tions in order to ensure that an application really consumes the amount of resources
that it has promised in its contract with the resource manager. The reason for hav-
ing this type of feedback is the assumption that it is in general better for an appli-
cation to, e.g., reduce its resource consumption itself in a controlled way, then to let
this reduction be performed by the underlying reservation mechanism.
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2.3 Interfaces of the Resource Manager

Interface between Applications and Resource Management

In an ACTORS-device multiple applications will be running. The whole system
should behave adaptively, e.g. when the battery power becomes low it should still
be able to offer some services, maybe with lower quality; if the user runs multiple
applications at once, like displaying an animated webpage and at the same time do-
ing a video call, which requires video encoding and decoding at the same time, the
quality of the applications should degrade in a controllable and predictable way.
To achieve this goal the applications themselves must be able to run with differ-
ent CPU requirements and producing for the respective CPU availability optimal
results. For that purpose ACTORS-aware applications will specify their resource
requirements, so the resource manager can distribute resources according to the ac-
tual applications demands instead of just distributing them in an ad-hoc way. The
specification of these demands should be done in a platform-independent, portable
way. This would have the advantage that the requirements would still be valid if
the application is ported to another system, if the processor is upgraded, etc. Re-
source requirements can potentially be a tuple of multiple required resources, e.g.
processing power, latency, memory, harddisk throughput etc. In ACTORS we will
focus on managing the CPU, i.e. processing power and latency.

When an ACTORS-aware application starts, it will register with the global AC-
TORS resource manager. The application will report its supported quality levels
together with the required resources for each level. Not only discrete levels will be
supported, but also continuous mappings from available resources to achievable
quality. This information alone is not enough to find an optimal resource distribu-
tion. The issue here is how optimal is defined. Not every application will be of the
same importance for the overall system quality level. So in addition to the resource
requirements the developer must be able to specify relative priorities or impor-
tances for the various applications. With all this information the resource manager
will decide how to distribute the resources, adjust the reservations in the operating
system accordingly and notify the applications. To enable the resource manager to
evaluate the current distribution of resources the applications will report their cur-
rent level of “satisfaction” with the current resources back to the resource manager.
This will be fed into the control- and optimization logic of the resource manager,
which will then derive the new distribution of resources.

Interface between Resource Management and Operating System

The ACTORS-aware applications will not directly talk to the operating system to
adjust their resource reservations, this will all be done by the resource manager.
Currently there is not yet a mature resource reservation mechanism in the Linux
kernel. As of 2.6.25 there is the Completely Fair Scheduler and a first version of
Control Groups, which together make it possible to assign shares of the CPU time
to groups of processes. But this is still very volatile, so we do not want to bind
the ACTORS resource manager to just that one implementation. Instead it should
be possible to support different resource reservation implementations, including
e.g. an Aquosa-based one and a Litmus-based one. To do this, there will be an
interface between the resource manager and the operating system implemented in
the resource manager, which abstracts these differences away.

The resource manager will not only adjust reservations for the applications, it
will also query the operating system for the currently consumed resources by the
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applications. There may be different ways how the different implementations in
the kernel report resource usage. If possible these differences will also be covered
by the interface and translated to a common representation.

The need of an common interface for different mechanisms that are imple-
mented on top of possibly different operating systems, imposes to extract the min-
imal number of features from the mechanisms used to implement the reservations.

The first key feature that is present in all the reservation interfaces is the band-
width. The bandwidth measures roughly the amount of resource that is assigned to
the demanding application. In simple periodic servers, the bandwidth is equal to
the ratio between the allocated budget and the period of the server itself.

Indeed the bandwidth captures the most significant feature of a reservation.
However the resource allocation of two reservations with the same bandwidth can
be significantly different. Suppose that that a reservation allocates the processor for
one millisecond every 10 and another one allocates the processor for one second
every 10 seconds. Both the reservations have the same bandwidth that is the 10%
of the available CPU. However the first reservation is more responsive in the sense
that it can replenish the exhausted budget more frequently. As a consequence we
expect that an application is more reactive if allocated on the first reservation. It
is then desirable to add a notion of time granularity in the interface between the
Resource Manager and the Operating System.

One intuitive measure of the granularity is the period of reservations. However
there may be allocation mechanisms that are not periodic, such as Pfair [9]. In these
cases it is not clear what is the value of the period. Hence we choose to measure the
time granularity by the delay, that is the longest amount of time that the application
may need to wait for being assigned some resource.

The abstraction by bandwidth and delay is quite common in many other do-
mains, such as communication networks. This resource abstraction is called (α, ∆)
server model [10], where α denotes the bandwidth and ∆ the delay. Another name
for this type of server model is a latency-rate server.

Given any reservation, below we describe how to extract the bandwidth α and
the delay ∆ from it. First we define a time partition as follows.

Definition 1 A partition is a measurable function π : R → {0, 1}, with the interpreta-
tion that the resource is allocated to the application over A = {t ∈ R : π(t) = 1} and it is
not allocated to the application over R \ A.

For example a static allocation mechanism pre-computes the partitions off-line,
and, at run-time, a dispatch mechanism will make use of a simple table to allocate
the resource. On the other hand, an on-line resource allocation mechanism uses
some rule for dynamically allocating the resource. Therefore, an on-line algorithm
may produce different partitions every time it is executed, depending on the arrival
times and execution times of the application tasks. Moreover, these partitions are
not necessarily periodic.

For a given partition, we define the minimum amount of time that is available
to the application in every interval of length t.

Definition 2 Given a partition π(t), we define the supply function Zπ(t) as the mini-
mum amount of time provided by the partition in every time interval of length t ≥ 0,
that is

Zπ(t) = min
t0≥0

∫ t0+t

t0

π(x) dx. (2.1)

As an example, consider an off-line algorithm that produces a periodic partition
π(t) with period 8, which allocates the intervals [1, 4] and [6, 7] to the application.
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The corresponding function Zπ(t) is plotted in Figure 2.5. Note that the worst-case
interval starts at time 4.

0 2 4 6 8 10 12 14 16 18

8 163

Zπ(t)

PPP

t

Figure 2.5: An example of Zπ(t).

A partition π depends on the particular rules used to allocate the resource and
on the events occur ed on line so it is not possible to compute the function Zπ(t) in
the design phase, because we don’t know what π will experience. To generalize the
supply function to the server mechanism, we introduce the following definitions.

Definition 3 Given a reservation S, we define legal(S) as the set of partitions π that can
be generated by the reservation S.

Definition 4 Given a server S, its supply function ZS(t) is the minimum amount of
time provided by the server S in every time interval of length t ≥ 0,

ZS(t) = min
π∈legal(S)

Zπ(t). (2.2)

As the supply function of a reservation S is computed, it is possible to find its
bandwidth α and delay ∆. α is the average slope of ZS(t), formally defined as:

α = lim
t→∞

ZS(t)
t

. (2.3)

The computation of the value of ∆ requires some more efforts. Informally
speaking, once we have computed α, the delay ∆ is the minimum amount we must
right-shift the line αt to be completely below ZS(t). Formally:

∆ = max{d ≤ 0 : ∃t ≥ 0 ZS(t) ≤ α(t− d)}. (2.4)

In the example of supply function Z(t) shown in Figure 2.5 we have α = 1
2 and

∆ = 3.
An (α, ∆) server can be mapped to a CBS with period P and budget Q as fol-

lows.

α =
Q
P

∆ = 2(P−Q)

The value of ∆ corresponds to the worst case delay between two invocations of the
server in two successive periods.
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Chapter 3

The Application Interface of the
Resource Manager

3.1 Overview

The interface between the resource manager and the ACTORS-aware applications
serves multiple purposes. In general, it enables communication between the re-
source manager and the applications. The resource manager queries applications
for the service levels they support and their accompanying resource requirements.
It will also notify the applications about its decisions regarding the resource reser-
vations. And last but not least, the interface will also be used to notify the resource
manager about the level of satisfaction the applications are achieving currently.
Two types of ACTORS-aware applications will be supported: applications with a
number of discrete service levels, and applications with a continuous mapping of
resource usage to achieved quality.

The resource manager will not react to each and every minor change in resource
availability or resource demand, these have to be handled locally in the applica-
tions. Instead it will only make major decisions, which will be necessary, when
applications start or quit, when the required processing power for a video changes
e.g. from a still scene at night to a fast moving sports scene etc.

The interface should be hardware-independent, so the parameters transported
there should be independent e.g. from the current CPU.

3.2 Applications with Discrete Quality Levels

An application which provides discrete service levels is for instance a video-encoder.
It could provide full quality, i.e. high resolution, full frame-rate; medium quality,
e.g. with lower resolution but still full frame-rate and low quality with lower res-
olution and also lower frame-rate. Different applications can provide a different
number of levels, requiring different sets of resources.

To be useful for the resource manager, these quality levels need to have an indi-
cator to show how “good” they are, i.e. how much quality they provide. For each
application there will be one defined measure how to determine the level of qual-
ity. For a video application this could be the PSNR, or a value computed in some
way from a combination of resolution and frame rate. This measure will be used
internally by the applications and will be mapped to an integer quality number. So
the outside world, including the resource manager, does not have to know which
actual measurable value the quality number represents.

Each application has a set of demands on resources. This can include:
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Index Quality Resource 1 Resource 2 ... Resource N
0 Q0 R10 R20 ... Rn0
1 Q1 R11 R21 ... Rn1
... ... ... ... ... ...
M Qm R1m R2m ... Rnm

Table 3.1: Set of quality levels

Application Importance
A1 I1
A2 I2
... ...
An In

Table 3.2: Assignment of importances to applications

• CPU time

• CPU time granularity

• Disk bandwidth

• Network bandwidth

• Available energy

• and more

For each quality level the demands on the set of required resources will be spec-
ified. These specifications should not be bound to some platform, i.e. not to some
specific hardware, some specific resource reservation implementation, etc.

This will form a table-like representation, which each application publishes,
as shown in Table 3.1. With this information the resource manager knows about
the quality levels the applications can work at and their properties. Based on this
information the resource manager can optimize the distribution of resources so that
an optimal overall system performance is achieved.

Application Importance/User Preferences

Optimal overall system performance is a vague term. Does a system perform best
if application A performs at the highest level but applications B and C only creep
along ? Or does it perform best if all three applications are able to work at a medium
quality level ? Is it better if the system is able to play a movie at its full resolution
and frame rate, but after that the battery power is used up, or is it better if the
movie is played at a mediocre quality but therefore there is enough battery power
left for one more day of use ?

The software itself cannot decide this, some human must help and specify what
behaviour is preferred. This is done by assigning integer importance values to
the applications, as can be seen in Table 3.2. These will be taken into account by
the resource manager when it optimizes the resource distribution. It is up to the
resource manager how to handle different importances.
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Figure 3.1: Interface between resource manager and applications.

Additionally there can be different objectives by which the resource manager
should optimize the resource distribution. As mentioned in the beginning, user A
might prefer highest possible quality, while user B might put emphasis on a long
battery life. To support this, the resource manager has a global property which
determines the current optimization objective.

Reporting Achieved Application Quality

As mentioned before, applications are able to work at different quality levels. Each
quality level has an index and an external visible quality number which translates
into an internally used actual measure. Applications will monitor themselves for
the quality measure they are achieving and determine to which quality level the
current output belongs. Whenever this currently achieved quality level changes,
the new level will be reported by its index to the resource manager over the re-
porting interface of the resource manager, denoted as “QualityMeasurement” in
Figure 3.1.

Setting Up the Quality Levels of Applications

All ACTORS-aware applications register at the resource manager. The resource
manager then queries the quality levels of the applications, so that it has a global
view over the participating applications and their resource requirements. Addi-
tionally the resource manager knows the importance values assigned to the appli-
cations and also the current optimization objective according to the user prefer-
ences.

Using all this information the resource manager finds an optimal distribution of
resources among the applications. This means it determines the respective quality
level indices for the applications and tells the applications to work at these levels.
All this is done over the interface denoted as “QualitySettings” in Figure 3.1. At
the same time it translates the abstract resource requirements from the applications
into concrete parameters for the available reservation system services and adjusts
them accordingly.

After the quality levels for the applications have been set, these applications
will report back the quality they are achieving currently. If everything goes as
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expected, they will all be working at the desired level. But it can also happen that an
application achieves a higher or lower level than it should according to the settings.
This could happen e.g. if a video switches from a low contrast low movement
scene to a high contrast high movement scene, then the processing requirement
would suddenly increase. Over its reporting interface the resource manager will
be notified about such changes. This forms a control loop.

Representation of Resource Demand Values

The resource demands depend on the individual applications. There are resource
demands which are dependent on the platform the application runs on and re-
source demands which are not. E.g. a video decoder which also writes the decoded
stream to a permanent storage has among others the following demands:

• CPU time to decode the video

• the period in which new frames have to be decoded

• disk bandwidth to write the decoded video to the storage device

From these three examples CPU time needed for decoding depends very much
on the platform, while the other two are independent from the platform. These are
instead properties inherent to the application.

CPU Time

Every application needs some execution time to work successfully on a given hard-
ware. There are several issues here: the execution time can vary, so in some appli-
cations assuming the worst case execution time can be very pessimistic and lead
to low actual system utilization. Encoded video streams are a good example for
this, here the effort required to decode the frames depends heavily on the video
contents, which vary over time. There are different options how execution time
requirements can be specified.

• An obvious way to express the CPU time requirements is to specify the per-
centage of the full processor power required for the application. But this has
the also obvious disadvantage, that it is completely CPU specific.

• Another option would be to specify a period and the execution time per pe-
riod. This also has the disadvantage that it is CPU specific.

• The execution time required depends basically on the logic encoded in the
source code, which does not change when executed on a different platform.
Using e.g. the number of cycles required to solve a particular problem is still
not possible, since this can also depend vastly on the actual hardware. E.g.
decoding a video stream on a RISC CPU will map to a large number of cycles,
while decoding the same video stream e.g. on a CPU with additional multi-
media (SIMD) instructions will lead to a much smaller number of execution
cycles.

• A good option would be if the application would contain information about
the high level operations which will be executed [11]. This information could
then be mapped to the actual hardware. Unfortunately this information is
usually not existing.
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• Platform dependencies would be avoided if only a small set of discrete levels,
like “High”, “Medium”, “Low” and “Minimal” would be specified. While
this would be very hardware independent, it also would not contain a lot of
information. It would then be up to the feedback controllers to figure out the
details. While this would work for ordering the quality levels of one appli-
cation by their need for processing power, this would give no information
about the relative requirements of multiple applications. If e.g. an applica-
tion offers 3 different quality levels, but in general has already low needs for
computation time, this cannot be expressed.

To solve these issues, we propose to use two separate measures for specifying
the execution time requirements. On one hand it must be possible to express the
requirements of different applications relative to each other, and on the other hand
it must also be possible to express the differences in resource requirements of the
different quality levels within each application.

Specifying the CPU time requirements of applications relative to each other ex-
actly is hard, due to the given reasons. Instead, as above a small set of discrete cat-
egories is introduced, and each application is assigned to one of those categories.
E.g. a control application would be assigned to the "Low CPU time requirement“
category, while a video encoder would be assigned to the ”High CPU time require-
ment“ category. The resource manager can then use these categories as a very
rough hint how to set up the initial reservations, i.e. when there is no feedback
information available yet. So a category ”Low“ might result in an initial reserva-
tion of 10 %, a category ”Medium“ might result in an initial reservation of 25 %,
and a category ”High“ might result in a reservation of 50 %. These values are pure
guesses that the resource manager can make, but they will provide at least some
reasonable starting point.

The CPU time requirements of the different quality levels within one applica-
tion relative to the highest quality level of that application should be quite exactly
known, since these levels have been implemented for the purpose to use less CPU
time. So here integer values can be used, which have to be interpreted relative to
each other within one application. E.g. for a video decoder it is plausible that a
mode with half the frame rate and half the resolution should need around 25 % of
the full quality mode, also without knowing how much that maximum actually is.
A similar approach is used in AGEDF [8], here ”weight translation functions“ are
used to translate quality levels to resource demands.

CPU Time Granularity

In addition to the amount of CPU time an application needs, it also needs to spec-
ify at which granularity this time is needed. This granularity is given by the ap-
plication and independent from the platform the application runs on. This value
is known and it should be easily possible to specify it as concrete value, e.g. in
seconds. If it is a control application, the sampling rate depends on the plant. If
it is a video decoder, the frame rate just depends on the media. For both men-
tioned examples it is necessary to be able to specify the granularity, otherwise it
might happen that although the application received the amount it required, e.g.
40%, but distributed in such a way that it did not receive any CPU time in the first
minute and then more than it needed after that. In many cases such a behaviour
would be unacceptable. By specifying the granularity the control application can
say that it needs the CPU time e.g. every 10 ms, and for video applications in many
cases it will be 40 ms, which corresponds to a frame rate of 25 fps.
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For CAL applications, where there are actors exchanging tokens, it may be also
possible that more information can be extracted automatically from the code by
examining token rates.

Disk Bandwidth

This is quite similar to the CPU time requirement. Also an amount of disk band-
width is necessary as well as the time granularity, for the same reasons. But there
is a difference, the required disk bandwidth will usually be known and it will be
hardware independent. If an application stores e.g. a video stream to disk, the re-
quired bandwidth depends only on the amount of data in the stream, so here also
the concrete value can be used, e.g. expressed in kB/s.

Power Consumption

This is similar to the required processing power. It completely depends on the
actual hardware. Here it may also be possible to declare the power consumption
relative to the one with the highest consumption.

3.3 Applications with Continuous Quality Mapping

An example of an application which supports a continuous mapping from resource
usage to achieved quality is a feedback controller. In feedback control the most
natural quality candidate is the control performance. In general the definition of
control performance is highly application dependent. Most control applications
consist of a number of individual control loops whose aggregated performance de-
cides the overall performance. The relationship between the overall performance
and the performance of the individual loops is furthermore in most cases very
complex. For example, the overall performance of an industrial robot is mainly
concerned with the precision of the hand actuator. However, this depends on the
performance of the controllers for all the robot joints plus, possibly, additional force
and vision feedback loops. Another example is a flight control system where the
dynamic behaviour of the airplane is dependent on the control loops involving all
the individual actuators (ailerons, rudders, engine thrust, etc).

Also when one considers a single control loop the definition of control perfor-
mance is not straightforward. One possibility is to define the performance in the
time domain based on the response to a step change in the setpoint value of the con-
trol loop. Here, parameters such as rise time, overshoot, maximum control signal
and settling time all are related to the control performance. Another possibility is to
instead consider the frequency response of the control loop. In ACTORS, however,
the performance will be measured in terms of the value of a quadratic cost function
defined as

Jc = lim
T→∞

1
T

∫ T

0

[
x(t)
u(t)

]T

Q
[

x(t)
u(t)

]
dt

where Q is a positive semi-definite matrix, x(t) is the state variable vector, and u(t)
is the control signal vector.

An advantage with the quadratic cost function definition of control perfor-
mance is that it for a large class of systems is possible to calculate the expected
value of the cost function analytically. Furthermore, this can be done as a function
of the amount of CPU resources used by the control loop. Using, e.g., the Matlab
toolbox Jitterbug [12] developed by the Control Department at University of Lund
(ULUND) it is possible to calculate how, e.g., the control performance of a control
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Figure 3.2: Typical appearance of cost function graphs.

loop depends on the sampling period or on the input-output latency of the control
loop. It is also possible to define these as arbitrary statistical distribution functions
rather than simply as constant values.

In ACTORS it is the possibility to evaluate the quadratic cost functions for a
wide range of constant sampling periods that is most relevant. Evaluation of a
large number of process types and different controller structures have shown that
the relationship between sampling period and cost function values in most can be
described by a linear or quadratic relationship, i.e., the larger the sampling period
the larger the value of the cost function (and, hence, the worse the performance)
[13], see Fig.3.2. A value of infinity for the cost function indicates that the closed
loop system is unstable. The cost function can be evaluated analytically when the
plant under control and the controller are linear, and all stochastic variables are
independent. In other cases, the function can still be evaluated through simulation
using, e.g., the TrueTime toolbox [14].

The sampling period of a control loop corresponds to the amount of CPU re-
sources consumed by the application. If the period equals the worst case execution
time the application will consume 100% of the CPU resources on a single core. The
sampling rate in combination with the worst-case execution time together influence
the CPU time and the CPU time granularity. The CPU time granularity typically
corresponds to the sampling period whereas the CPU time required should be large
enough to allow the controller code to be executed within a single sample.

Assuming that there is a linear or quadratic relationship between the sampling
rate and the cost (the inverse of the performance) it is possible to either use these
functions when defining the relationship between the corresponding resource re-
quirements and the quality levels, or one can discretize them into integer values.
If discretization is used then two things must be kept in my mind. First, the dis-
cretization applies both to the performance and to the quality levels. Second, there
must be sufficiently many discrete levels in order to fit the continuous curve with
reasonable accuracy.

3.4 Translating Application Demands to Resource
Reservation Parameters

As discussed before, applications will specify their resource requirements in a sys-
tem independent way, so they are not tied to specific hardware. In the end these ab-
stract parameters must be translated to specific parameters for the current resource
reservation implementation on the current hardware. This will be done using the
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Figure 3.3: The interface to the resource reservation implementation.

optimization and feedback control logic in the resource manager. The feedback
control system will work on one side with the abstract quality levels of the appli-
cations and on the other side with the abstract parameter settings for the resource
reservation. In the interface to the resource reservation these parameters will then
be translated into parameters for the actual resource reservation implementation,
as depicted in Figure 3.3
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Chapter 4

Example Walkthrough

4.1 Control Application

A control application in which the the performance depends linearly on the ad-
justable sampling rate is implemented on an ACTORS platform. For the sake of
simplicity a discretized version of the continuous-valued performance functions is
used in the example.

• The possible quality levels are

Service level Quality Processing demand CPU time granularity
1 1 33 20 ms
2 2 40 50 ms
3 3 50 40 ms
4 4 66 30 ms
5 5 100 20 ms

• The overall CPU time requirement category: Low

• The application starts and registers itself at the resource manager together
with the service table above.

• Since there is enough free resources the resource manager decides that the
application may run at service level 5.

• The resource manager maps the processing demand and the latency require-
ments for this quality level to parameters for the current hardware and the
current reservation mechanism used, e.g., α and ∆ in a latency-rate server.

• The resource manager informs the application about the service level it should
execute at.

• The application uses this information to change the sampling rate for the con-
troller to the corresponding value and to recalculate the controller parameters
accordingly.

• After a while one of the already hosted applications needs to change oper-
ating mode. This forces the resource manager to redistribute the resources.
Now the control application may only operate at quality level 2. The resource
manager informs the controller about the new reservation parameters.

• The application modifies the sampling rate and the controller parameters ac-
cording to the new service level.
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4.2 Multimedia Application: MPEG2 decoder with QAFS

In this example we will talk about an MPEG 2 decoder with Quality Aware Frame
Skipping (QAFS) [15]. The basic idea of QAFS is that if not enough CPU time for
decoding all frames is available, then some frames are skipped, so at least all frames
which are actually decoded can be decoded in time. With QAFS skipping frames
doesn’t start with a random frame, but with the least “important” frames.

• We assume the following service levels:

Service Level Quality Processing CPU Description
demand time granularity Description

0 100 100 40 ms skip no frames
1 50 80 40 ms skip 20 % of frames
2 10 50 80 ms skip 50 % of frames

• Overall CPU time requirement category of the MPEG2 decoder: High

• The application starts and registers itself at the resource manager.

• The resource manager queries the application for its resource demands and
gets the above table as response.

• The resource manager uses some clever technique to map the “High” pro-
cessing demand and the latency requirements to parameters for the current
hardware.

• The resource manager allocates a big part of the CPU for the decoder, since it
has “High” processing demands.

• E.g. when another application starts and requires CPU, not enough CPU re-
sources are left for the MPEG decoder.

• The MPEG decoder reports to the resource manager that it is not able to
achieve a quality appropriate for level 0 anymore.

• The resource manager considers the importance values of the applications
and comes up with a new distribution of resources.

• This could mean that the MPEG decoder now has to run at level 1, where it
may skip 20 % of frames.

• Using a local controller the MPEG decoder tries to keep its CPU consumption
appropriate.

• Beside telling the application to perform at level 1, the resource manager also
adjusts the reservation in the operating system accordingly.

• Therefor it has to translate the portable values to concrete values.

Service level CPU bandwidth Server period
0 50 % 40 ms
1 40 % 40 ms
2 25 % 80 ms

28



• These concrete values then have to be translated to parameters for the re-
source reservation:

Service level Reservation, (e.g. α/δ)
0 0.02 s / 0.04 s
1 0.016 s / 0.04 s
2 0.02 s / 0.08 s
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Appendix A

Terminology

Actor The basic abstraction in CAL. An en-
tity that communicates asynchronously
with other actors by consuming tokens
from inports and producing tokens at
outports. Computations are performed
in a sequence of firings. In each firing
the actor may consume tokens from input
ports, may modify its internal state, and
may produce tokens at output ports.

Action Describes the computations that are done
within a firing of the actor that the action
is part of.

Compiled actor CA A set of instructions, resulting from CAL
compilation, to be executed sequentially
on a single processor. No parallelism is
possible within a compiled actor. Cor-
responds to one or a set of actors. A
compiled actor may have an associated
WCET.

Data flow Graph DG Graph consisting of instances of actors
connected by FIFOs. In most cases the
DG is cyclic.

Task T An instance of a compiled actor with a
unique set of ports and state. A task is a
sequential piece of code that may be asso-
ciated with a deadline and an execution
time.

Job A particular invocation of a task.
Job Precedence Graph JP A precedence relation between the jobs

described by a directed acyclic graph
(DAG). For static applications the DG can
be converted to a JP.

Application A set of threads or tasks which imple-
ment a functionality.

CAL application An application written in CAL, consist-
ing of connected actors.
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ACTORS-aware applica-
tion

Applications that cooperate with the re-
source manager. In most cases this will be
CAL applications, but it is not a require-
ment.

Static Application SA An application that can be described by
a JP. Static applications are activated with
a minimum inter-arrival period and may
have timing requirements, (e.g., deadline,
throughput, or delay). The precedence
graph of a static application is known a
priori and can be analysed off line.

Dynamic Application DA An application that is described by a DG
and cannot be translated into a JP.

Flow Fi A serialized (totally ordered) set of jobs
that are sequentially executed on a single
process.

Virtual Processor VP Uniprocessor reservation characterized
by a bandwidth α ≤ 1 and a delay ∆ ≥ 0.

Virtual multiprocessor VMP Multiprocessor reservation. When parti-
tioned multiprocessor scheduling is used
this corresponds to a set of VPs.

CAL Runtime A software entity which sets up and ex-
ecutes CAL applications. Each dynamic
CAL application has its own instance of
the CAL runtime. It contains and actor
activator and an actor dispatcher.

Actor Activator A mechanism that that activates actors as
input data become available and marks
them as ready. Part of the CAT runtime.

Actor Dispatcher A mechanism that selects an active actor
for execution and executes it until com-
pletion.

Job scheduler The operating system level algorithm
that selects a job among a set of ready
jobs and assigns it to a processor for ex-
ecution, e.g. an EDF scheduler.

Process An operating system process in user
space, with its own address space, poten-
tially containing multiple threads, etc.

Thread A thread in its conventional meaning: a
thread of execution without a separate
address space. Multiple threads can be
executed within one process.
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