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Chapter 1

Introduction

Deliverable context

This deliverable is the result of task 4.2 “Matching the Reservation Schemes with
the System State Abstraction for Control”, which is part of workpackage 4 “Re-
source Reservation Framework”. This is the final version of this deliverable, but at
the current state of the project it can only present the intermediate state, on which
further work in ACTORS will be based. Due to the iterative nature of development
the plans presented here will be modified and improved during the project.

The task of the resource manager in ACTORS is to distribute available resources
among the applications, this will be done by creating CPU reservations and as-
signing them to the respective applications. This deliverable presents the interface
between the resource manager and the resource reservation provided by the op-
erating system. The resource manager itself is presented in deliverable D3a “State
Abstractions”, which is right now available in an intermediate version. Its interface
from the point of view of applications using it is presented in deliverable D1f “In-
terface Specification”. The final versions of these three deliverables together will
describe the resource manager from all aspects. We recommend to read first de-
liverable D3a, followed by D1f before reading this deliverable D4b. This way the
reader will have a much better understanding of how all the components work to-
gether. The results of this deliverable are necessary for all tasks of workpackage
3, since they are all closely related to the resource manager, and for tasks 4.4 and
4.5. In these two tasks the resource reservation mechanism for ACTORS will be
developed and implemented, which has to provide an interface as described here.

Overview

Fig. 1.1 shows the architecture diagram of the ACTORS system. As can be seen,
the resource manager is in a central location, on one side it interfaces to the CAL
applications, and the other side it interfaces with the resource reservation from the
operating system. This deliverable focuses on the “lower” parts, i.e. the interfaces
between resource manager and operating system. So this deliverable starts with
chapter two at the bottom of the diagram, where approaches to resource reser-
vation under Linux are presented. This included CFS and SCHED_EDF, which
will be the resource reservation systems supported by the resource manager. In-
ternally the resource manager will use the (α, ∆) server model, which is presented
in chapter three. This is an abstract model for specifying both CPU bandwidth
as well as delay requirements, which enables the resource manager to work inde-
pendently from the specific interface details of the respective resource reservation
system provided by the operating system, denoted as ResourceReservation in the
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figure. Chapter four outlines what functionality the interface between the resource
manager and the resource reservation system, denoted as (alpha,delta) in the figure,
must support in order to be powerful enough to fullfill all needs of the resource
manager. The chapter also describes how the current resource consumption will
be reported by SCHED_EDF, this is done via the interface denoted as ResourceCon-
sumption in Fig. 1.1. Now that the resource reservation mechanism, the theoretical
server model to be used as well as requirements for the actual interface have been
described, chapter five shows how the resource manager will use the available in-
formation items to determine parameters for the (α, ∆) servers, which will then
have to be implemented e.g. by SCHED_EDF.

<<component>>
Cal Application

<<component>>
ResourceManager

<<component>>
OperatingSystem

<<component>>
ResourceReservation

<<component>>
Global Optimizer/Contr...

<<component>>
ActuatorActor

<<component>>
Adaptive actors

<<component>>
SensorActor

System actors, 
gateway between CAL actors 
and the system

Optimization and feedback 
control logic, isolated from the 
implementation details of the 
interfaces

Everything inside here is written 
in Cal, except the "system actors", 
which are written e.g. in C

Video codecs, control loops, 
etc.

These interfaces enable 
the resource manager to 
support different resource 
reservation implementations

Candidates control groups 
with CFS and SCHED_EDF

(alpha,delta)

ResourceConsumption

QualityMeasurementQualitySettings

ResourceReservation

Figure 1.1: ACTORS architecture overview.

In the following the terms reservation and virtual processor will be used with
the same meaning.
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Chapter 2

Towards a new Resource
Reservation scheduler for Linux

The process scheduler is the component of the kernel that selects which process (or
processes, on multi-core platforms) to execute at any instant of time. The process
scheduler (or simply the scheduler) is the subsystem of the kernel that divides the
finite resource of processor time between all runnable processes on a system. It is
an important part of the kernel (responsible for a good utilization of the processor,
which is a shared resource) and the basis for multitasking (which gives the illusion
of multiple processes running simultaneously even on single-core platforms).

In this chapter we will introduce the concept of Resource Reservations, and we
will explain why a scheduler based on Resource Reservations is needed to have a
deterministic system. Then, we will provide an overview of the past and current
Linux schedulers which provide some kind of reservation mechanism. Finally, we
will describe SCHED_EDF, the Resource Reservation mechanism that will be imple-
mented and used in the Actors project.

2.1 The need for Resource Reservations

Description of the old O(1) scheduler

The old scheduler of Linux (called O(1) [1]) has been designed and implemented by
Ingo Molnar. It is a fully preemptive algorithm, with good interactive performance
and SMP scalability. Its main feature is the O(1) complexity: all computations com-
pletes in a constant time regardless of the number of running processes.

It provided three policies to schedule the processes:

• SCHED_NORMAL

• SCHED_FIFO

• SCHED_RR

The SCHED_NORMAL policy is a time-sharing policy for normal processes, with
priorities mapped internally in a range between 100 and 140.

A slice of the processor time (called “timeslice”) is assigned to each runnable pro-
cess, and decremented during process execution. When the timeslice of the running
process expires, the scheduler replaces the process with another runnable process.
In other words, the timeslice specifies how long a process can run before being pre-
empted — i.e., when a process’ timeslice reaches zero, the process is preempted
and cannot run until all the other processes have exhausted their timeslices.
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Setting the default timeslice is not a trivial task, of course: longer timeslices give
poor interactive performance, while shorter timeslices create much overhead due
to context switches. In the O(1) scheduler the timeslice computation is based on the
static priority 1 called “nice value”. This is a value between -20 (i.e., highest priority)
and +19 (i.e., lowest priority) that can be changed using the nice() system call.
Timeslices are expressed as percentage of the HZ variable. This variable specifies
the timer’s tick rate: at boot time Linux programs the registers of the hardware
timer to issue interrupts at this frequency.

SCHED_FIFO and SCHED_RR are policies for high-priority processes. In the Linux
community, these policies are called “real-time” with a meaning very different from
the common meaning in the real-time literature: processes scheduled with these
policies have highest priority in the system, but no timing constraints (like dead-
lines) are associated with them. Internally, these processes have a priority mapped
in a range from 0 to 99.

SCHED_FIFO is a simple First-In First-Out algorithm, without timeslices: the pro-
cess runs until it explicitly yields the processor, and can be preempted only by
higher priority processes.

SCHED_RR is similar to SCHED_FIFO with timeslices: among processes with the
same priority, a process executes until it exhausts a predefined timeslice (i.e., Round-
Robin). However, a process cannot be preempted by processes with lower priority
(as in SCHED_FIFO).

The basic data structure of the O(1) scheduler is the runqueue, which contains
the list of all runnable processes on a given processor (i.e., one runqueue per pro-
cessor). Each runqueue has two priority arrays called active and expired, respec-
tively. active contains all processes having timeslice left, while expired contains
all processes that exhausted their timeslice. When a process’ timeslice reaches zero,
its timeslice is recalculated and the process is moved to the expired array. These
priority arrays are the base for the O(1) complexity: when there are no more pro-
cesses in the active array, the pointers to the two arrays are switched. This way,
recalculating all the timeslices is equal to swapping two pointers (i.e., it can be done
in a constant time, regardless of the number of running processes).

Issues with the O(1) scheduler

A scheduling algorithm has to satisfy very conflicting goals:

1. A fast response time (i.e., low latency for interactive processes become runnable)

2. A high throughput (best utilization of the processor by reducing the number
of context switches)

3. No starvation: ready processes should not wait too long before obtaining the
processor

Unix variants (Linux included) tend to explicitly favor I/O-bound and inter-
active processes. The O(1) scheduler had very good interactive performance, in-
deed, but it did not provide any kind of reservation between processes. Thus,
developers were able to implement some tests which exploit the knowledge of
the heuristics used by the scheduler to force it behaving differently than expected.
Some examples of these tests are fiftyp.c, fthud.c, fchew.c, fring-test.c and
fmassive_intr.c [2]. These tests showed that, without some kind of reservation
algorithm, a process could affect the processor share given to other processes.

1Note that there is an error in [1] about the computation of timeslices.

8



The operating system should instead support scheduling policies providing
temporal protection among the running processes. This means that the timely ex-
ecution of a process should not be affected by the behaviour of the other processes
running on the system. This way, if a process misbehaves, and tries to use all the
resources of the system, it cannot starve the other processes. It is important to pro-
vide temporal protection among different processes, similarly to the way the Linux
kernel provides memory protection.

Introduction to Resource Reservations

The Resource Reservation mechanism [3, 4] is an effective way for providing such
temporal protection in General Purpose Operating Systems (GPOSs) like Linux.
The basic idea behind the resource reservation technique is to reserve a share of the
resource to each process — i.e., reserve the resource for a fraction of the time to the
process. During its execution, the process is executed at an appropriate priority.
However, if the process tries to execute for a longer time, then it is suspended
and resumed later. This way, each process is constrained to not use more than its
reserved share.

A general mechanism to enforce Resource Reservations in a GPOS is to create a
set of “servers” or “virtual processors”. Each virtual processor is characterized by a
“budget” Qi and a “period” Pi and serves a specific process of the operating system.
Such process is then allowed to execute for an amount of time equal to Qi every
period Pi.

The budget Qi acts as a timeslice: it is decreased when the process belonging
to the virtual processes executes. When the budget reaches zero, the priority of the
virtual processor is decreased and the processor can be given to processes belong-
ing to higher priority virtual processors (if any).

2.2 Related work

During the last years, several approaches and mechanisms have been proposed
to add Resource Reservations to the Linux scheduler. This section provides an
overview of the state of the art of Resource Reservation schedulers available for
Linux. Eventually, none of the schedulers listed in this section was accepted in the
mainstream kernel, and Linux users had to wait the CFS scheduler (see Section 2.3)
before having some kind of reservation inside the standard kernel.

OCERA

A real-time scheduler based on Resource Reservations has been developed for
Linux 2.4.18 within the OCERA (“Open Components for Embedded Real-time Appli-
cations”) European project, and it is available as Open Source code [5, 6, 7, 8]. To
minimize the modifications to the standard kernel code, the real-time scheduler has
been developed as a further external scheduler implemented in a loadable kernel
module [9].

A small patch (called “Generic Scheduler Patch”) applied to the Linux kernel
exports the necessary symbols and the relevant events to the real-time scheduler.
Based on the information provided by the patch, the real-time scheduler modifies
the process priority, raising the selected process to the maximum priority, and then
calls the standard Linux scheduler. In practice, the two schedulers co-exist, but
the standard Linux scheduler acts only as a dispatcher for the external real-time
scheduler. The interface to the scheduler has been exported through the standard
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sched_setscheduler() system call, adding a new scheduling policy, and extend-
ing the structure sched_param. The scheduler implements the CBS [10, 5] and the
GRUB [11, 12] scheduling algorithms.

The real-time scheduler needs to know all the relevant events happening in the
system related to the processes (i.e., process creation, termination, blocking and
unblocking). For this reason, the patch puts some hooks inside the kernel code that
are used to intercept and export the interesting scheduling events.

This approach is very straightforward and flexible, but it adds some overhead
(acceptable for most soft real-time applications) and much complexity to the system
due to the additional scheduler.

During the implementation and maintainance of the project, the developers no-
ticed that the position of the hooks inside the Linux kernel code is the real issue
in this approach, and it is not easy to understand where they can be safely placed.
This issue made the porting of the code to different releases of the Linux kernel very
hard, and it is the main reason why the OCERA code was never offically ported to
the 2.6 series of the Linux kernel.

AQuoSA

Parts of the original code of OCERA were used to implement the AQuoSA (“Adap-
tive Quality of Service Architecture”) project [13], which is substantially a rewrite of
the original code for the 2.6 Linux kernel. This project maintains all the benefits
and drawbacks of the original approach. This project is still a work in progress,
and lacks some important features like support for multicore platforms and for
newest Linux kernels with CFS scheduler (see Section 2.3). These features may be
added in the next future.

LITMUS

The LITMUS project [14], led by Dr. James H. Anderson, is a soft real-time ex-
tension of the Linux kernel with focus on multiprocessor real-time scheduling and
synchronization. The Linux kernel is modified to support the sporadic task model
and modular scheduler plugins. LITMUS is a very complex framework, therefore
it cannot be integrated in the mainstream Linux kernel.

The project includes plugins for several scheduling policies, but only supports
the Intel x86-32 and Sparc64 architectures (i.e., no embedded platforms). Moreover,
it is not integrated with the Control Groups filesystem and the support for the CFS
scheduler has been added only very recently.

SCHED_SOFTRR

A Resource Reservation scheduling policy for Linux has been developed also by
Davide Libenzi with the SCHED_SOFTRR project [15]. Using this policy, a process
can run with real-time priority, but it is subject to a constraint on the maximum
processor time it can consume. Thus, non-privileged users can have determinis-
tic latencies when running time-sensitive applications, while system stability and
fairness are enforced by the bound.

SCHED_ISO, RSDL and SD

Con Kolivas is a Linux developer, most notable for his work on processor schedul-
ing. He is very active in the scheduler subsystem and implemented several sched-
ulers for Linux.
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The first scheduling policy, called SCHED_ISO [16] (which stands for “Isochronous
Scheduling”) does not require superuser privileges and is starvation-free. Processes
running under the SCHED_ISO policy actually execute as SCHED_RR unless the pro-
cessor usage exceeds a specified limit (i.e., 70%). The value of this limit can be
configured through the Linux proc filesystem.

Kolivas developed several other processor schedulers such as the Rotating Stair-
case Deadline (RSDL) [17] and the Staircase Deadline (SD) [18] schedulers to ad-
dress interactivity concerns of the Linux kernel with respect to desktop computing.

These schedulers were not been accepted mainstream, mostly for maintainance
issues, and on July 2007, Kolivas announced that he would cease developing for
the Linux kernel. However, Ingo Molnar stated that Kolivas’ implementation of
“fair scheduling” inspired him to develop his CFS scheduler (see next section) as a
replacement for the earlier O(1) scheduler.

2.3 State of the art: CFS

Eventually, a kind of Resource Reservation scheduler called “Completely Fair
Scheduler” (CFS) has been implemented by Ingo Molnar and merged in Linux 2.6.23
as replacement for the previous O(1) Linux scheduler [19, 2].

Overview

80% of CFS’s design can be summed up in a single sentence: CFS basically mod-
els an “ideal, precise multi-tasking CPU” on real hardware. “Ideal multi-tasking
CPU” is a theoretical CPU that has 100% physical power and which can run each
process at precise equal speed, in parallel, each at 1/nr_running speed. For exam-
ple: if there are 2 processes running, then it runs each at 50% physical power — i.e.,
actually in parallel.

On real hardware, we can run only a single process at once, so we have to in-
troduce the concept of “virtual runtime”. The virtual runtime of a process specifies
when its next timeslice would start execution on the ideal multi-tasking CPU de-
scribed above. In practice, the virtual runtime of a process is its actual runtime
normalized to the total number of running processes.

Few implementation details

In CFS the virtual runtime is expressed and tracked via the per-process p->se.vruntime
(nanosec-unit) value. This way, it is possible to accurately timestamp and measure
the “expected CPU time” a process should have gotten. Notice that on “ideal”
hardware, at any time all processes would have the same p->se.vruntime value

— i.e., processes would execute simultaneously and no process would ever get “out
of balance” from the “ideal” share of processor time.

The process picking logic of CFS is based on this p->se.vruntime value and it is
thus very simple: CFS always tries to run the process with the smallest p->se.vruntime
value (i.e., the process which executed least so far). CFS always tries to split up pro-
cessor time between runnable processes as close to “ideal multitasking hardware”
as possible.

Most of the rest of the design of CFS just falls out of this really simple concept,
with a few add-on embellishments like nice levels, multiprocessing and various
algorithm variants to recognize processes that block often.
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The rbtree

The Red-Black Tree (“rbtree” [20]) is a type of self-balancing binary search tree, used
for storing sortable key/value data pairs. It provides bounded worst case perfor-
mance for insertion and deletion, with slightly slower (but still O(log n)) lookup
time.

The design of CFS is quite radical: it does not use the old data structures for the
runqueues, but it uses a time-ordered rbtree to build a “timeline” of future process
execution, and thus has no “array switch” artifacts (by which both the O(1) and
Kolivas’ RSDL/SD schedulers were affected).

CFS also maintains the rq->cfs.min_vruntime value, which is a monotonic in-
creasing value tracking the smallest vruntime among all processes in the runqueue.
The total amount of work done by the system is tracked using min_vruntime. This
value is used to place newly activated entities on the left side of the tree as much
as possible.

The total number of running processes in the runqueue is accounted through
the rq->cfs.load value, which is the sum of the weights of the processes queued
on the runqueue.

CFS maintains a time-ordered rbtree, where all runnable processes are sorted
by the p->se.vruntime key (there is a subtraction using rq->cfs.min_vruntime to
account for possible wraparounds). CFS picks the “leftmost” process from this tree
and executes it. As the system progresses forwards, the executed processes are
put into the tree more and more to the right — slowly but surely giving a chance
for every process to become the “leftmost process” and thus get on the processor
within a deterministic amount of time.

Summing up, CFS works like this: it runs a process a bit, and when the process
schedules (or a scheduler tick happens) the process’ CPU usage is “accounted for”:
the (small) time it just spent using the physical CPU is added to p->se.vruntime.
Once p->se.vruntime gets high enough so that another process becomes the “left-
most process” of the time-ordered rbtree it maintains (plus a small amount of
“granularity” distance relative to the leftmost process so that we do not over-schedule
processes and trash the cache), then the new leftmost process is picked and the cur-
rent process is preempted.

Some features of CFS

CFS uses nanosecond granularity accounting and does not rely on any detail re-
lated to the timer’s tick rate (e.g., jiffies or HZ variables). Thus, the CFS sched-
uler has no notion of “timeslices” in the way the previous scheduler had, and has
no heuristics whatsoever. There is only one central tunable (you have to switch the
CONFIG_SCHED_DEBUG option):

/proc/sys/kernel/sched_min_granularity_ns

which can be used to tune the scheduler from “desktop” (i.e., low latencies) to
server (i.e., good batching) workloads. It defaults to a setting suitable for desktop
workloads. SCHED_BATCH is handled by the CFS scheduler module too.

Due to its design, the CFS scheduler is not prone to any of the existing tests
explicitly designed to make the scheduler behave not fairly. Under CFS all the
existing tests work fine: they do not impact the interactivity of the scheduler, which
produces the expected behavior in any circumstance.

The CFS scheduler has a much stronger handling of nice levels and SCHED_BATCH

than the previous scheduler: both types of workloads are isolated much more ag-
gressively.
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Scheduling classes

Actually the “completely fair” algorithm is only a part of the CFS scheduler. The
new CFS scheduler has been designed in such a way to introduce “Scheduling
Classes”, an extensible hierarchy of scheduler modules. These modules encapsu-
late scheduling policy details and are handled by the scheduler core without the
core code assuming too much about them. In other words, CFS is a modular sched-
uler, composed by some (currently only two) inner schedulers (called scheduling
classes).

The first inner scheduler resides in the sched_fair.c file. It implements the CFS
algorithm described above, and it handles processes having the following policies:

• SCHED_NORMAL (traditionally called SCHED_OTHER): this is the scheduling policy
used for regular processes.

• SCHED_BATCH: this policy does not preempt as often as regular processes would,
thereby allowing processes to run longer and make better use of caches but
at the cost of interactivity. This is well suited for batch jobs.

• SCHED_IDLE: this policy is even weaker than nice 19, but it is not a true idle
time scheduler in order to avoid to get into priority inversion problems which
would deadlock the machine.

The second scheduling class has higher priority than the previous one, and it
resides in the sched_rt.c file. This class handles processes having SCHED_FIFO or
SCHED_RR policies, and behaves according to the POSIX semantics. The implemen-
tation is simpler than in the previous O(1) scheduler: it uses 100 runqueues (for all
100 RT priority levels, instead of 140 as in the previous scheduler) and it needs no
expired array (which simplifies the implementation).

Implementation of scheduling classes

Scheduling classes are implemented through the sched_class structure, which
contains hooks to functions that must be called whenever an interesting event oc-
curs. This is the (partial) list of the hooks:

• enqueue_task(...) Called when a task enters a runnable state. On the
sched_fair.c scheduling class, it puts the scheduling entity (task) into the
red-black tree and increments the nr_running variable. SCHED_EDF as well,
will use a red-black tree data structure to reduce the time of access and ma-
nipulation of data.

• dequeue_tree(...)

When a task is no longer runnable, this function is called to keep the cor-
responding scheduling entity out of the red-black tree. It decrements the
nr_running variable.

• yield_task(...)

This function is basically just a dequeue followed by an enqueue, unless the
compat_yield sysctl is turned on; in that case, it places the scheduling entity
at the right-most end of the red-black tree.

• check_preempt_curr(...)

This function checks if a task that entered the runnable state should preempt
the currently running task.
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• pick_next_task(...)

This function chooses the most appropriate task eligible to run next.

• set_curr_task(...)

This function is called when a task changes its scheduling class or changes its
task group.

• task_tick(...)

This function is mostly called from time tick functions; it might lead to pro-
cess switch. This drives the running preemption.

• task_new(...)

The core scheduler gives the scheduling module an opportunity to manage
new task startup. The CFS scheduling module uses it for group scheduling,
while the scheduling module for a real-time task does not use it.

Control Groups

Normally, the scheduler operates on individual tasks and strives to provide fair
processor time to each task. Sometimes, it may be desirable to group tasks and
provide fair processor time to each task group. For example, it may be desirable to
first provide fair processor time to each user on the system and then to each task
belonging to a user.

Control Groups (cgroups) are an extension to CFS which allows to group tasks
and divide processor time in several different ways among such groups. The mech-
anism is controlled by the following kernel options:

• CONFIG_GROUP_SCHED is the generic option to enable group scheduling

• CONFIG_RT_GROUP_SCHED permits to group real-time (i.e., SCHED_FIFO and SCHED_RR)
tasks.

• CONFIG_FAIR_GROUP_SCHED permits to group CFS (i.e., SCHED_NORMAL and SCHED_BATCH)
tasks.

At present, there are only two (mutually exclusive) options to group tasks for
processor bandwidth control purposes:

• CONFIG_USER_SCHED groups tasks based on user id

• CONFIG_CGROUP_SCHED allows to manually group tasks using the cgroups pseudo
filesystem

This options needs the CONFIG_CGROUPS option to be set, and lets the admin-
istrator create arbitrary groups of tasks, using the cgroup pseudo filesystem.
See Documentation/cgroups.txt for more information about this filesystem.

Notice that only one of these two options to group tasks can be chosen at com-
pile time, and not both.

When CONFIG_USER_SCHED is defined, a directory is created in sysfs for each new
user and a cpu_share file is added to that directory.

# cd /sys/kernel/uids

# cat 512/cpu_share # Display user 512's CPU share

1024
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# echo 2048 > 512/cpu_share # Modify user 512's CPU share

# cat 512/cpu_share # Display user 512's CPU share

2048

#

CPU bandwidth between two users is divided in the ratio of their CPU shares.
For example: if you would like user root to get twice the bandwidth of user
guest, then set the cpu_share for both the users such that root’s cpu_share is twice
guest’s cpu_share.

When CONFIG_CGROUP_SCHED is defined, a cpu.shares file is created for each
group using the cgroup pseudo filesystem. Examples below show how to create
task groups and modify their CPU share using the cgroup pseudo filesystem.

# mkdir /dev/cpuctl

# mount -t cgroup -ocpu none /dev/cpuctl

# cd /dev/cpuctl

# mkdir multimedia # create "multimedia" group of tasks

# mkdir browser # create "browser" group of tasks

# #Configure the multimedia group to receive twice the CPU bandwidth

# #that of browser group

# echo 2048 > multimedia/cpu.shares

# echo 1024 > browser/cpu.shares

# firefox & # Launch firefox and move it to "browser" group

# echo <firefox_pid> > browser/tasks

# #Launch gmplayer (or your favourite movie player)

# echo <movie_player_pid> > multimedia/tasks

Limits of CFS

The biggest limit of the CFS scheduler is that it is not a real-time scheduler. To
understand why, we first need to introduce some basic concepts about real-time
theory [21].

A real-time system is a computing system in which computational activities must be
performed within predefined timing constraints [22]. Typically, a real-time system is
implemented as a set of concurrent tasks that are executed on a Real-Time Operat-
ing System (RTOS) [21]. These tasks, called “real-time”, are executable entities of work
characterized, at least, by a worst case execution time and a timing constraint [23].

Depending on the type of application, different timing constraints (like the jitter
on the initial or the finishing time of execution) can be defined. A typical constraint
is the deadline, which is the instant of time the task’s execution is required to be
completed. A real-time task must complete before its deadline, otherwise the re-
sults could be produced too late to be useful.

By knowing the worst case execution time (i.e., the amount of computational
resources needed in the worst case) and the deadline of each task, it is possible to
develop some scheduling algorithm which allows to schedule all tasks and meet
all deadlines.

For periodic real-time tasks, a typical assumption in the real-time literature [21]
is that the current deadline corresponds to the end of the current period.
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Currently, on CFS, the period of the Resource Reservation mechanism is fixed
for all tasks and cannot be different from one task to another. This makes the imple-
mentation of most real-time scheduling algorithms (like Rate Monotonic or Earliest
Deadline First) impossible.

CFS is a kind of Resource Reservation mechanism, but not in the sense the real-
time community uses this word. On CFS, in fact, it is not possible to set a period or
a deadline for a task, but it is possible only to assign the share of the resource to a
task (or to a group of tasks) that will be respected according to a global period.

2.4 A new Resource Reservation scheduler: SCHED_EDF

General description

In the ACTORS project a completely new Resource Reservation mechanism for the
Linux kernel will be implemented. Its name is SCHED_EDF, and it is a real-time
scheduling algorithm.

This mechanism will exploit the modular feature of the CFS scheduler to add a
further scheduling class which will handle tasks generated by CAL. In particular,
the final Linux scheduler will act as follows:

• SCHED_NORMAL and SCHED_BATCH tasks will be still handled by the standard
Linux proportional scheduler scheduling class of CFS;

• SCHED_RR and SCHED_FIFO tasks will be still handled by the POSIX scheduling
class of CFS;

• Tasks generated by CAL will be handled by our new real-time scheduling
class. The scheduling policy associated to these tasks will be called SCHED_EDF

(which gives the name to the mechanism itself) and will have highest priority
in the system.

Features and characteristics

The Resource Reservation mechanism based on SCHED_EDF will have the follow-
ing features:

• It will be developed from scratch, without starting from any existing project

• It will be aligned with the current mainstream kernel: it will work on Linux
kernels having CFS scheduler

• It will be integrated with the CFS scheduler itself

• It will be integrated with the cgroups mechanism and will exploit the cgroups
interface

• It will natively support multicore platforms

In particular, the SCHED_EDF scheduling class will implement a partitioned
Earliest Deadline First (EDF) algorithm. This means that there will be at least one
EDF queue for each processor in the system.

Several differences exist between SCHED_EDF and the current version of AQu-
oSA [13]. First of all, they have a completely different approach. The current ver-
sion of AQuoSA puts some hooks inside the Linux scheduler to export relevant
events, and implements the Resource Reservation scheduler in a external kernel
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module. SCHED_EDF, instead, implements a real-time scheduler inside the Linux
scheduler itelf, by exploiting the modular design of CFS.

On AQuoSA, the real-time scheduler manages only aperiodic processes, and
periodicity is completely handled at user-level: the qmgr_end_cycle() function
(implemented at user-level) stops and resumes the process using the common sys-
tem calls provided by Linux. On SCHED_EDF, instead, we investigate a different
approach, by making the kernel aware of process periodicity (if any) through the
sched_setscheduler2() system call (see below).

Last but not least, AQuoSA does not yet support newest Linux kernels with
CFS or multicore platforms. SCHED_EDF, instead, will work only on latest Linux
kernels (since it exploits features of CFS itself) and will have native support for
multicore systems and for ARM platforms.

API

The SCHED_EDF API deals with budgets and periods 2.
Currently, the following API is exported to user-level to handle SCHED_EDF

processes:

• A new system call sched_setscheduler2(...) allows to create or modify
process’ budget and period. Notice that even if the process is not periodic, in
order to use SCHED_EDF, the user has to provide some values for budget and
period. The meaning is that the process is allowed to execute at most for a
time equal to "budget" every "period".

• For periodic processes, the sched_setscheduler2() system call can be used
also to inform the kernel that the current instance of the process has finished
execution. In this case, the current process is blocked until the end of the
current period (if no argument is given, otherwise the process is blocked for
the time provided as argument). This system call is invoked by the process
itself at the end of each period. If the process belongs to a group of processes,
the other processes inside the group are free to continue execution.

• On multicore platforms, the system call sched_setaffinity(...) allows to
specify which core must run the process. This is invoked by the Resource
Manager to sort the processes between different cores. Notice that sched_setaffinity(...)
works also with threads: according to the manual page, the value returned
from a call to gettid(2) can be passed as argument.

For what concerns groups of processes, the cgroups interface allows to group
processes on the same virtual processor (in the same way as shown in the previous
section) and to set or change the budget and period of the virtual processor.

A group is bounded to a CPU and can accept processes that run on the same
core. It is possible to change the period and budget using the edf_runtime_us and
edf_period_us files. These files are created once the cgroup filesystem is mounted.

The following example shows how to manage a SCHED_EDF process.

# def ine g e t t i d ( ) s y s c a l l ( __NR_gettid )
# def ine s i g e v _ n o t i f y _ t h r e a d _ i d _sigev_un . _ t i d

# def ine SCHED_EDF 4

s t r u c t sched_edf_param {

2We will use (budget,period) instead of (alpha,delta) pairs to encourage the merge of this schedul-
ing class inside the Linux kernel.
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i n t s c h e d _ p r i o r i t y ;
s t r u c t timespec period ;
s t r u c t timespec budget ;

} ;

/∗ S t r u c t to t r a n s f e r parameters to the thread ∗/
s t r u c t thread_param {

pthread_t thread_id ;
char ∗name ;
s t r u c t timespec wcet ;
s t r u c t timespec deadline ;
s t r u c t timespec period ;
i n t s i g n a l ;
i n t c lock ;
s t r u c t thread_param ∗next ;

} ;

s t a t i c i n t shutdown ;

/∗
∗ t imer thread
∗/

void ∗ t imerthread ( void ∗param )
{

s t r u c t thread_param ∗par = param ;
s t r u c t sched_edf_param sched_edfp ;
s t r u c t s igevent s igev ;
s i g s e t _ t s i g s e t ;
t imer_ t t imer ;
s t r u c t timespec now, next , i n t e r v a l ;
s t r u c t i t i m e r s p e c tspec ;
i n t po l i cy ;
i n t nrun =0;
i n t pid ;

po l i cy = SCHED_EDF ;

i n t e r v a l . tv_sec = par−>period . tv_sec ;
i n t e r v a l . tv_nsec = par−>period . tv_nsec ;

s igemptyset (& s i g s e t ) ;
s igaddset (& s i g s e t , par−>s i g n a l ) ;
sigprocmask (SIG_BLOCK , &s i g s e t , NULL) ;

memset(&sched_edfp , 0 , s i z e o f ( sched_edfp ) ) ;

sched_edfp . s c h e d _ p r i o r i t y = 0 ;
sched_edfp . period . tv_sec = par−>deadline . tv_sec ;
sched_edfp . period . tv_nsec = par−>deadline . tv_nsec ;
sched_edfp . budget . tv_sec = par−>wcet . tv_sec ;
sched_edfp . budget . tv_nsec = par−>wcet . tv_nsec ;
sched_setscheduler2 ( 0 , pol icy ,

( s t r u c t sched_param ∗)(& sched_edfp ) ) ;

/∗ Get current time ∗/
clock_get t ime ( par−>clock , &now ) ;
next = now ;
next . tv_sec ++;
pid = g e t t i d ( ) ;
s igev . s i g e v _ n o t i f y = SIGEV_THREAD_ID | SIGEV_SIGNAL ;
s igev . s igev_s igno = par−>s i g n a l ;
s igev . s i g e v _ n o t i f y _ t h r e a d _ i d = pid ;
t i m e r _ c r e a t e ( par−>clock , &sigev , &timer ) ;
t spec . i t _ i n t e r v a l = par−>period ;
t spec . i t _ v a l u e = next ;
t imer_se t t ime ( timer , TIMER_ABSTIME , &tspec , NULL) ;

p r i n t f ( " process %d: START\n" , ( i n t ) g e t t i d ( ) ) ;
while ( ! shutdown ) {

i n t s i g s ;
i f ( s igwai t (& s i g s e t , &s i g s ) < 0)

goto out ;
p r i n t f ( " process %d: running c y c l e %d\n" , pid , nrun ) ;
nrun ++;
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}

o u t :
/∗ switch to normal ∗/
sched_edfp . s c h e d _ p r i o r i t y = 0 ;
sched_setscheduler2 ( 0 , SCHED_OTHER, ( s t r u c t sched_param ∗ ) &sched_edfp ) ;

re turn NULL;
}

s t a t i c void sighand ( i n t s i g )
{

shutdown = 1 ;
}

i n t main ( i n t argc , char ∗∗argv )
{

s t r u c t thread_param tpar ;

s i g n a l ( SIGINT , sighand ) ;
s i g n a l (SIGTERM, sighand ) ;

pthread_create (&( tpar . thread_id ) , NULL, t imerthread , &tpar ) ;

/∗ . . . ∗/
}
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Chapter 3

Introduction to (α, ∆) servers

The need of an common interface for different mechanisms that are implemented
on top of possibly different operating systems, imposes to extract the minimal num-
ber of features from the mechanisms used to implement the reservations.

The first key feature that is present in all the reservation interfaces is the band-
width. The bandwidth measures roughly the amount of resource that is assigned to
the demanding application. In simple periodic servers, the bandwidth is equal to
the ratio between the allocated budget and the period of the server itself.

Indeed the bandwidth captures the most significant feature of a reservation.
However the resource allocation of two reservations with the same bandwidth can
be significantly different. Suppose that that a reservation allocates the processor for
one millisecond every 10 and another one allocates the processor for one second
every 10 seconds. Both the reservations have the same bandwidth that is the 10%
of the available CPU. However the first reservation is more responsive in the sense
that it can replenish the exhausted budget more frequently. As a consequence we
expect that an application is more reactive if allocated on the first reservation. It
is then desirable to add a notion of time granularity in the interface between the
Resource Manager and the Operating System.

One intuitive measure of the granularity is the period of reservations. However
there may be allocation mechanisms that are not periodic, such as Pfair [24, 25].
In these cases it is not clear what is the value of the period. Hence we choose to
measure the time granularity by the delay, that is the longest amount of time that
the application may need to wait for being assigned some resource.

The abstraction by bandwidth and delay is quite common in many other do-
mains, such as communication networks [26]. In real-time scheduling, this resource
abstraction is called “bounded delay time partition” [27, 28]. However we rename
this mechanism as (α, ∆) server model, to stress the dependency on the two consti-
tuting parameters α (the bandwidth) and ∆ (the delay).

Given any reservation mechanism, below we describe how to extract the band-
width α and the delay ∆ from it. First we define a time partition as follows.

The supply function

First we introduce some definitions that are common in reservation-based schedul-
ing theory [27, 29, 30, 31], even though introduced with different terminology.

Definition 1 A partition P ⊆ R is a countable union of non-overlapping intervals1

P =
⋃

i∈N

[ai, bi) ai < bi ≤ ai+1. (3.1)

1The mathematical development does not change if P is any Lebesgue measurable set.
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The characteristic function IP : R→ {0, 1} of the partition P is defined by

IP(t) =

{
1 t ∈ P
0 t /∈ P

We distinguish between static partitions and dynamic partitions. A static alloca-
tion mechanism pre-computes the partitions off-line, and, at run-time, a dispatch
mechanism will make use of a simple table to allocate the resource. On the other
hand, a dynamic resource allocation mechanism uses some rule for dynamically al-
locating the resource (for example allocating Q time units every period P). There-
fore, a dynamic algorithm may produce different partitions every time it is exe-
cuted, depending on the arrival times and execution times of the application tasks.
Moreover, these partitions are not necessarily periodic.

For a given partition, we define the minimum amount of time that is available
to the application in every interval of length t.

Definition 2 Given a partition P, we define the supply function ZP(t) as the minimum
amount of time provided by the partition in every time interval of length t ≥ 0, that is

ZP(t) = min
t0≥0

∫ t0+t

t0

IP(x) dx. (3.2)

If the partition is static, Equation (3.2) can be readily used to compute the sup-
ply function (in Section 3.1 we show some example of computation).

However if the partition is dynamic then it is not known in advance when the
time will be allocated. To extend the definition of supply function also to servers
allocating time by dynamic partitions, we introduce the following definitions.

Definition 3 Given a reservation S, we define legal(S) as the set of partitions P that can
be generated by the reservation S.

Notice that if the server S allocates statically the time by a static partition P,
then legal(S) is constituted by the unique element P.

We now generalize the supply function to any server.

Definition 4 Given a server S, its supply function ZS(t) is the minimum amount of
time provided by the server S in every time interval of length t ≥ 0,

ZS(t) = min
P∈legal(S)

ZP(t). (3.3)

Defining α and ∆ of a server

The supply function ZS(t) fully describes the time provided by the server to any
time consuming entity requiring it. However it is sometimes convenient to extract
the most significant features from the supply function ZS(t). A convenient abstrac-
tion of server is based on the only concepts of bandwidth α and delay ∆.

The bandwidth α is the average slope of ZS(t), formally defined as:

α = lim
t→∞

ZS(t)
t

. (3.4)

The computation of the value of ∆ requires some more efforts. Informally
speaking, once we have computed α, the delay ∆ is the minimum horizontal dis-
placement such that α(t− ∆) is a lower bound of ZS(t). Formally:

∆ = inf{d ≥ 0 : ∀t ≥ 0 ZS(t) ≥ α(t− d)}. (3.5)
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It can be noticed that this abstraction is very simple, since it is consituted by
only two parameters: the bandwidth α and the delay ∆. The advantage of a simple
abstraction is that it can be placed on top of very different server mechanisms.
On the other hand the price of simplicity is paid in terms of tightness: a more
detailed description of the time provided by a server would allow a tighter usage
of resources.

We believe however, that the benefits of a simple abstraction overcomes the loss
of computational resource. In the next section we will show how the bandwidth α
and the delay ∆ are computed from common servers.

3.1 Computing α and ∆ of existing servers

In this section we propose several simple examples to demonstrate how to extract
the values α and ∆ from well known servers.

Static Partition

Suppose we have a reservation S that statically allocates the first two time units
every period eight, starting from time zero. In this case the set of all legal partitions
legal(S) is constituted by only one partition that is

P =
⋃

k∈N

[0 + 8k, 2 + 8k)

This partition can be easily represented graphically as reported in Figure 3.1. In the

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Figure 3.1: A static periodic partition.

figure a thick vertical line represents a period.
Since the partition is statically allocated, then legal(S) = {P}, and we have

ZS(t) = min
Q∈legal(S)

ZQ(t) = ZP(t)

From Equation (3.2) it follows that for computing ZP(t), we must find, for all t,
what is the worst case starting point t0. We provide the following simple Lemma
that follows directly from the result by Feng and Mok [28].

Lemma 1 Given the partition
P =

⋃
k∈N

[ak, bk)

then

ZP(t) = min
t0∈{bk}

∫ t0+t

t0

IP(x) dx. (3.6)

This lemma expresses the very simple intuition that the worst-case condition for
an application allocated to a reservation occurs when the time provided has just
expired. In fact in Equation (3.6) it can be noticed that the minimum occurs in the
set {bk} that are the right boundaries of the intervals. In fact at the right boundary
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an idel interval starts. This conrresponds to a candidate worst-case condition fo the
supplied resource Z(t).

Applying the lemma to this first simple example we find directly that ZP(t) can
be found when t0 = 2. The resulting ZS(t) then is the one depicted in Figure 3.2,
from which it follows that this reservation has α = 0.25 and ∆ = 6. More in general,

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Figure 3.2: The supply function for a static periodic partition.

for a static periodic partition that allocates Q time units every period P we have [28]

α =
Q
P

∆ = P−Q (3.7)

From this example one would be tempted to affirm the ∆ is always equal to the
length of longest idle interval. However this is not true. We propose the static
partition of the Figure 3.3 to show this.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

Figure 3.3: A static generic partition.

By the application of the Lemma we must consider t0 equal to all the possible
end of the interval where the resource is allocated. In this case the possibilities for
t0 in one period are t0 ∈ {4, 7, 13}.

In the bottom part of Figure 3.4 we show the possible schedules of the partition
starting from each of the candidates. Above we plot the integral from t0 to t0 +
t, as t varies for all the possible t0. Then we plot the minimum as required by
Equation (3.6) by a thick line, that is ZS(t).

For this supply function we compute both α = 9
16 and ∆ = 5 − 16

9 = 3.222.
Notice that in this case ∆ is larger than the longest idle time (that is 3) because the
linear lower bound is constrained by the point (5, 1).

Dynamic Partitions

A dynamic partition occurs when the allocation of time is not assigned statically.
Instead the allocation obeys to some rules. In this case the set legal(S) is not con-
stituted by a unique partition, but it contains all the possible partition that can be
generated. For example the partitions reported in Figure 3.5 are all legal partitions
of a periodic server implemented by a task whose computation time is Q = 3,
period P = 6, and deadline D = 8.
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t

ZS(t)

Figure 3.4: A static generic partition.

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Figure 3.5: Example of dynamic partitions

The worst-case partition occurs when t0 coincides with the expiration of a time
quantum Q that is allocated at the beginning of the allocation period and the next
quantum is received at the end the period. This scenario is reported in Figure 3.6.
Hence, in the case of a periodic server having parameters (Q, P, D) the correspond-

0 Q D P 2P 3P

Figure 3.6: The supply function of a periodic server.

ing (α, ∆) parameters are [32]:

α =
Q
P

∆ = P + D− 2Q (3.8)
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Finally, it is also possible to map a pfair task [24, 25, 33] onto an (α, ∆) server.
However we do not report here this development, since it is quite complicated. The
description of the algorith is available [34].

3.2 The design problem

By the design problem we mean the selection of the (α, ∆) server that minimizes
some goal function (typically, to minimize the used bandwidth) such that some
constraint is satisfied (typically, the application mapped onto the server must be
fulfill the timing requirements).

Suppose that a server must schedule a periodic task which requires C units of
time every period T (we call U = C

T the task utilization). Then the (α, ∆) servers
that can schedule is are such that:

Z(T) = α(T − ∆) ≥ C (3.9)

meaning that the time provided must be greater than or equal to the computation
time C. This constraint is also represented in Figure 3.7. The left part of the figure

t

Z(t)

T

C
∆

α
1
2

3
5

3
4

1

Figure 3.7: Depicting the possible (α, ∆) servers.

shows the point (T, C) (that is (6, 3) in the figure) and four possible supply func-
tions. The same situation is reported on the right part of the figure. In this case,
instead, we plot in gray the region of (α, ∆) servers that can guarantee the service
specified by Eq. (3.9). The dots along the curve represents the four special cases
that are also plot in the left part.

Suppose that the goal the we want to achieve is to minimize the used band-
width, then the solution of the design problem is

min α = min
C

T − ∆
⇒ α =

C
T

= U, ∆ = 0

However, this solution (also indicated by the leftmost dot in the right part of
Figure 3.7) is quite not satisfactory. In fact it tells that the best choice is to set ∆ = 0
that is not possible, because if ∆ = 0 the impact of the overhead becomes huge. In
fact if we account also for the cost Cs of switching between two reservations in the
goal to be minimizes, we are able to find a solution that is more significant. In this
case the goal to be minimized becomes [30]

min α +
Cs

P
If we suppose that the server is implemented by a periodic server, then from Eq. (3.7)
we have that

P =
∆

1− α
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meaning that the bandwidth to be minimized is

min α + Cs
1− α

∆

Since α and ∆ must also guarantee the constraint of providing at least C in T
(see Eq. (3.9)), α and ∆ must satisfy the following constraint

∆ =
αT − C

α
(3.10)

and the overall bandwidth to be minimized that account also for the constraint of
Eq. (3.10) is

min α + Cs
α(1− α)
αT − C

Fortunately, this problem can be solved analytically. The solution is

α = U

1 +

√√√√1−
1− Cs

C

1− Cs
T

 (3.11)

If we assume that Cs is small enough w.r.t. C and T, we can approximate Equa-
tion (3.11) at the first order. This allows to find

α ≈ U
(

1 +
Cs

T
√

U

)
(3.12)

Notice that if Cs = 0 we find again α = U.
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Chapter 4

Functionality supported by the
interface

The following chapter describes the functionality that the interface between the re-
source manager (RM) and the underlaying reservation and scheduling (RS) layer
should support and the type of information that should be passed over this inter-
face. How the interface is implemented and the actual API will not be detailed
here, although it is likely that the cgroup file system interface will be involved. It is
also likely that the interface internally is implemented using several mechanisms,
e.g., both the cgroup interface and a D-Bus interface.

4.1 From the resource manager

The RM needs to perform, at least, the following operations involving the RS layer.
Some of the operations below may also be performed directly from the applica-
tions, i.e., by a call to the corresponding system call.

• Creation and deletion of reservations. It should be possible for the RM to
create a new reservation or to remove a reservation.

• Execution allocation. It should be possible for the RM to assign a process to a
reservation as well as removing a process from a reservation.

• Reservation allocation. It should be possible for the RM to specify on which
core a reservation should run, in the case the reservation is not allowed to
migrate between cores. This is realised by the sched_setaffinity system
call.

• Change global parameters. The RM should be able to modify parameters
that affect the operation of the RS layer globally. This could, for example,
mean changing the operation of the bandwidth server system in some way or
informing the scheduling subsystem that a particular core should be turned
off or on again.

• Change reservation parameters. The RM should be able to change the param-
eters of each server. In the case the reservation system is based on a periodic
bandwidth server of the CBS-family then this would correspond to changing
the server period, P, and the server budget, Q. If instead a CFS scheduler is
used it would only be the share (budget) that could be changed per reserva-
tion, whereas the period would be a global parameter that is common to all
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reservations. Since the RM interally uses the (α, ∆) representation a conver-
sion is needed between these parameters and the parameters applicable to
the RS system being used.

4.2 To the resource manager

The following information, at least, needs to be provided from the RS layer to the
RM.

• Resource consumption. The interface should support that the RS layer in-
forms the RM about how much resources that are consumed within each
reservation. In the SCHED_EDF case this is expressed in terms of the used bud-
get of the reservation. A value that is less than the assigned budget indicates
that the latter is too large, whereas a value that is equal to the assigned bud-
get indicates that the latter is exactly correct or too small. The reason why the
used budget may never be larger than the assigned budget is that SCHED_EDF
enforces hard reservations, in contrast to the classical CBS mechanism.

In order not to burden the RM with too frequent information the budget infor-
mation should not be sent too often. Several possibilities exist, the simplest
being to report this periodically. The reporting period may be, for exam-
ple, proportional to the delay parameter ∆, since this parameter measures the
sensitivity of the application to the time granularity. Hence it is reasonable
to expect that an application that can sustain a large ∆ can be notified the
bandwidth consumption less frequently. At compile time, an integer variable
would specify the default number of periods on which the average should
be computed on. At run-time, a file in the cgroup filesystem may allow to
set this variable to a different value. This way, it would be possible to set a
specific value for each virtual processor. Another possibility is to only report
when a sufficiently large change in budget consumption has occurred, i.e., to
have event-driven rather than time-driven reporting.

It could also be useful for the RM to obtain information not only about av-
erage values but also of how much the used budget varies from one server
period to another, i.e., providing some higher order moment or the maximum
and minimum values over the reporting period.

The budget actually used by the application will be made available by the
Reservation Layer through some mechanism. This may be a read-only file
in the cgroup filesystem or a particular system call. In the former case, the
information would be available only for groups of file (i.e. virtual processors)
and it would not be possible to have this information for a SCHED_EDF process
running outside a virtual processor. This is not a problem, however, because
we can always create a virtual processor containing only one process.

Since the RM uses (α, ∆) representation the used budget needs to be concerted
into used bandwidth.

• Core availability. Assuming that it is possible for the scheduling or hardware
layer to turn off cores or execute cores at a lower clock frequency in order to
save power, this is also something that needs to be reported to the RM.
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Chapter 5

Resource Allocation

The resource manager (RM) is responsible for the allocation of resources to the
different application. Although several resource types could be considered, here
the focus will be on CPU resources. The output from the resource manager consists
of information to the underlying reservation and scheduling layer and information
to the applications that are executing within the control of the resource manager.
The resource allocation will be performed when the application set changes, e.g.
when a new application is started, and during the execution of the applications,
e.g., when the consumed resources as measured by the reservation layer deviate
too much from the allocated resources.

Performing the resource allocation will for realistic application sets be rather
time consuming. Therefore it is necessary to avoid performing it too often. The
allocation problem can be viewed as a combined optimization and control prob-
lem. Several solution techniques are plausible, e.g., heuristic approaches, linear
programming, mixed integer linear programming, quadratic programming, etc.
The details of this are not part of this document. However, it is likely that the
implementation will contain a substantial element of heuristics, moving the focus
from optimal solutions to sub-optimal and less time consuming solutions.

The resource manager should be able to support both CAL applications and
non-CAL applications. However, since the focus of ACTORS is CAL applications
this is the only case that is described here. The CAL applications considered can be
divided into two types:

• dynamic CAL applications, and

• static CAL applications.

The dynamic case is the general case corresponding to, e.g, most multimedia stream-
ing applications. Here the execution and the requirements are highly data-dependent.
As a consequence of this it is also for these applications that dynamic resource al-
location is most needed.

For static CAL applications, e.g. most control applications, the CAL network
can be converted to a static precedence graph for which off-line schedulability anal-
ysis can be applied. The output of this analysis consists of the number of virtual
processors to be used, and the parameters for these. Although this is partly the
same information that the resource manager generates dynamically, the off-line
schedulability analysis is not considered part of the resource manager. Instead,
for these applications the corresponding parameters are considered as fixed and
provided to the resource manager as inputs. However, it should be possible for
the resource manager to dynamically adjust the resource parameters also for static
applications using on-line measurements, e.g., in the case the consumed resources
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differ substantially from the allocated resources. A reason for this could, e.g., be
that an incorrect worst-case execution time estimate has been used in the schedu-
lability analysis.

5.1 Resource Manager Inputs

The inputs to the resource manager can be divided in two types:

• static inputs, and

• dynamic inputs.

Static inputs can be viewed as configuration information that is not considered to
change during the execution of an application, at least not very often. One exam-
ple could be information from an application about its service levels and resource
requirements. Dynamic inputs correspond to sensor information about the actual
resource consumption or the achieved quality of an application. This information is
provided on-line to the resource manager and can be used to adjust the allocation.

Static Inputs

The static inputs consist of the following information

• Service level tables. The service level tables contain information about the
different service levels that an application can execute at. Associated with
each level are the resource requirements and the quality obtained. The values
are expressed as integers and are relative within each application. Hence, the
information in the service level tables can not be used as a basis for deciding
how resources should be divided between different applications. The service
levels can be both discrete and continuous. It is also possible to associate mul-
tiple resource types, e.g., CPU time and disk bandwidth, with an application.
Here, we will, however, only consider CPU time. Associated with the CPU
time the table also provides the CPU time granularity. This is an absolute
value that corresponds to the delay, that is, the longest amount of time that
the application may need to wait for being assigned some resource.

• Application importance. The application importance is a weight or priority
number that reflects how important an application is in relation to other ap-
plications, i.e., how important it is that the resource manager should be able
to meet the resource requirements of that application. This number can be
used to decide how resources should be distributed between applications.

• CPU time requirement category. In order to better be able to compare the CPU
time requirements of different applications each application is also assigned
to a certain CPU time requirement category, e.g. “Low CPU time require-
ments” or “High CPU time requirements”. The resource manager can use
these categories as a very rough hint on how to perform the initial resource
allocation.

• Maximum parallelity. The maximum parallelity is an optional input that may
be used to inform the resource manager about the maximum level of paral-
lelity that the application can benefit from. If a value is given that is smaller
than the number of cores available it is not useful for the resource manager to
assign more virtual processors to the application than that value.
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• Optimization objective. The optimization objective is a way for the user to
inform the resource manager about what the objective of the optimization
should be. Here we will assume that a number of categories are predefined,
e.g., “Maximum quality” or “Long battery life”. It should also be possible
for the user to indicate whether he/she wants to ensure that the resources
should be distributed in such way that all the applications should be able to
execute at some service level, or if the resources should be allocated to the
applications in strict importance order, i.e., first the most important appli-
cation is given the resources desired, then the second highest, etc, until all
the resources are distributed, possibly not giving any resources at all to some
applications.

In addition to the above static inputs the parameters resulting from the off-line
schedulability analysis of the static CAL applications are also considered as static
inputs to the resource manager. This consists of

• Number of virtual processors. This number decides how many virtual pro-
cessors that will be used for this application. In each virtual processor a single
task is executing corresponding to the flow that has been assigned to that vir-
tual processor.

• Bandwidth. The bandwidth for each virtual processor.

• Delay. The delay for each virtual processor.

In order to guarantee the schedulability of these application it is necessary for the
resource manager to reserve a sufficient amount of bandwidth for them. This share
of the bandwidth should not be considered part of the available resources for the
dynamic resource allocation.

Dynamic Inputs

There are two main dynamic inputs to the resource manager.

• Used budget. The used budget is a nanosecond time interval that measures
how much of the reserved budget that a virtual processor has used. A value
smaller than the reserved budget indicates that the reserved budget is too
large and may be decreased. A value that is equal to the reserved budget
indicates that the reserved budget is exactly right or too small. There is, how-
ever, no way of knowing how much too small it is. In order to not overload
the resource manager the used budget is not reported every server period.
This can be implemented in several ways:

– The average value, possibly with some range or variance measure, are
sent periodically to the resource manager, The reporting period would
then constitute an additional server parameter that the resource man-
ager should be able to set.

– The value is only reported when a sufficiently large change has occurred.

– The two approaches above could be combined. Although the values
may be reported periodically a new resource allocation is only performed
when a sufficient large change has occurred, i.e., a deadband is used.

Since the resource manager uses bandwidth and delay, the used budget needs
to be converted to used bandwidth before the resource allocation is performed.
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• Happiness value. The happiness value is a way for an application to report
its perceived quality to the resource manager. It is an integer number ranging
from 0 to 100 and above. A value of 100 indicates that the application is
satisfied with the amount of resources allocated to it. Values below or above
100 indicate that either the application cannot achieve the expected quality
corresponding to the current service level, i.e., that it has received too little
resources, or that the quality achieved is higher than what was expected, i.e.,
it has received more resources than necessary.

It is not possible for all applications to estimate their own quality, i.e., the re-
source allocation cannot assume that this sensor is always available. A similar situ-
ation holds for the used budget. Although the used budget may be available it may
not always provide any useful information. This is particularly so for the dynamic
CAL applications where the code that is executed on the same virtual processor
changes dynamically from one period to the next. As a consequence of this the
used budget will vary substantially, and it may therefore not be useful to adjust the
bandwidth based on this measurement. A possibility for these types of application
would be to instead base the decision of if the total allocated bandwidth to the ap-
plication is too small or too large, on the aggregated used budget information from
all the virtual processors that are executing the application.

In addition to these inputs it is also possible for the resource manager to receive
information from the hardware layer about power consumption, the number of
cores available, etc. This is also information that could trigger a reallocation of
resources.

5.2 Resource Manager Outputs

The resource manager has five main outputs.

• Application bandwidth. This is a real-valued number that decides how much
bandwidth has been allocated to the application. The maximum value for this
number corresponds to the number of cores on the platform.

• Application delay. This number is the delay that has been assigned to the
entire application. Normally it is given directly by the CPU time granularity
in the service level table.

• Number of virtual processors. The number of virtual processors to be used
for the application. For static CAL applications this is decided by the off-line
schedulability analysis. For dynamic CAL applications different approaches
are possible. One possibility is to always use the same number of virtual
processors as there are physical processors. Another possibility is to only use
as many virtual processors as necessary to obtain the available bandwidth.
For example if an application has been assigned the bandwidth 2.5 then it is
enough to use 3 virtual processors.

• Processor allocation. The processor allocation decides to which physical pro-
cessor a virtual processor should be allocated. For static CAL applications
which physical processor to use does not matter as long as the schedulabil-
ity condition is fulfilled for each of the processors (for CBS this means that
the sum of the assigned bandwidth on a processor should be less than 1).
However, for dynamic CAL applications and the case of the same number of
virtual processors as cores it makes sense to allocate the virtual processors on
different cores.
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• Service level. The service level is used to inform an application about which
service level that it should execute at. The service level could be used by
the application as the basis for selecting among different internal modes of
operation. The quality level associated with the service level could also be
used as a setpoint value for an internal control loop that modifies the resource
consumption of the application on order to obtain this quality.

Since SCHED_EDF is based on partitioned EDF scheduling a virtual processor
may not span multiple cores. Hence, the application bandwidth needs to be dis-
tributed onto the virtual processors. Also here, different possibilities exist:

• Equal distribution. Here the total application bandwidth is divided evenly
among the virtual processors. For example, using four cores a total band-
width of 2.6 would be split into four equal parts of 0.65.

• Bin packing. Here we assume that the number of virtual processors to use
has been determined from how many that are maximally needed, i.e. for a
bandwidth of α the number of virtual processors used is given by dαe. In this
case the bandwidth is split into m = bαc parts of unit bandwidth plus one
additional part with bandwidth α−m.

In addition to deciding the bandwidths of the virtual processors it is necessary
to also decide the delays of the virtual processors from the delay of the total ap-
plication. Also, here different possibilities exist. One is to use the the value of the
total delay also in the virtual processors. Another would be to assign the delays
in a way that also takes the bandwidths into account. Which approach that is best
is still an open question. It is also an open question whether it is at all possible to
distribute the delay in some optimal way without having access to more detailed
application knowledge.

For the static CAL applications the bandwidths and the delays for the virtual
processors are given by the schedulability analysis.

Finally the bandwidths and delays for each virtual processor have to be trans-
lated into the actual server parameters supported by the underlying reservation
system. In the case of periodic servers parametrized by the budget and period this
is done as

Pi =
∆i

2(1− αi)

Qi =
∆iαi

2(1− αi)

In addition to the main outputs above the resource manager also needs to pro-
vide output to the reservation layer about the creation and deletion of virtual pro-
cessors. This is described in more detail in Chapter 4.

The structure of the resource manager is shown in Fig. 5.1. In the figure the
delay is indicated as a dynamic output, although it in ACTORS most likely will be
implemented as a static output. The reason for this is that it would in principle also
be possible to adjust the delay based on, e.g., the happiness value if a change in the
delay would effect the application quality in a known way. For some application
types this would be conceivable.

5.3 When to perform the resource allocation

The resource allocation should be performed in the following situations:
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Figure 5.1: The input-output of the resource manager. The inputs and outputs
in the horizontal direction corresponds to inputs provided and outputs generated
during application execution. The inputs and outputs in the vertical direction cor-
respond to static inputs and outputs. In most cases the signals are vector-valued
with one entry in the vector for each application.

• During startup. Here we assume that we have an application set available
but since they have not executed there is no knowledge about the used band-
width or the perceived application quality. Hence, the resources must be al-
located in open loop using mainly blind guesses that later can be improved
through the use of feedback.

• When an application finishes. When an application finishes resources are
returned to the resource manager and these could be used to improve the
quality of the remaining applications.

• When an application arrives. When a new application arrives the resource
manager needs to decide whether the application should be accepted or not.
If unused resources are available those may be used, otherwise the resources
provided to the already executing applications have to be decreased, some of
them possibly terminated if the new application is important enough.

• When the used bandwidth for a virtual processor is substantially smaller than
the allocated bandwidth. In this case the RM also knows how much band-
width becomes available.

• When the used bandwidth for a virtual processor is equal to the allocated
bandwidth. The likely cause is a too small bandwidth, however, the RM has
no information about how much too small it is. In this case the RM needs
to gradually increase the allocated bandwidth until the used bandwidth is
slightly below the allocated, i.e., on the safe side.
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• When the application quality is too low. When the perceived quality of an
application does not match the expected quality for the given service level
the resource manager could respond in a number of ways. One possibility
is to increase the total reservation bandwidth, another is to decrease the total
delay.

• When the application quality is too high. This is the opposite situation from
before. This could indicate that the application receives too much resources.

• When the amount of resources changes caused by, e.g., switching off cores to
save battery life or scaling down CPU frequencies to save battery life.

• When the application importance or optimization objectives are changed.

It should be noted that there are two sensors that may be used for deciding if the
resources that have been allocated to an application are sufficient, the application
quality (the happiness) and the used bandwidth. It is, however, important to have
in mind that it is probably rarely the case that both of these are used for the same
application. For dynamic CAL applications it will primarily be the application
quality that is used, whereas as for static CAL applications it will mainly be the
used bandwidth that will be used.

When a resource reallocation is performed caused by the used bandwidth sen-
sor it should be noted that his information is local to a particular virtual processor.
If the used bandwidth in the other virtual processors for the application at hand
correspond to the allocated bandwidth, it should be sufficient to recalculate the
bandwidth (αi) for that particular virtual processor, and based on that update the
global bandwidth for the application, rather than update the bandwidths for all the
virtual processors associated with the application.

The resource manager contains feedback at several levels. At the lowest level
it consists of a feedback loop that uses the used budget reports to modify the pa-
rameters of individual virtual processors. On an intermediate level feedback from
the perceived application quality together with aggregated information about the
used budgets of all the virtual processors assigned to a particular application can
be used to modify the parameters of all the involved virtual processors. Finally,
at the highest level feedback from the perceived application quality can be used to
modify the applications by changing their service levels.

How these different feedback levels should be designed and implemented will
be one of the main topics of year 2 in ACTORS.
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